精英家教网 > 高中数学 > 题目详情
17.已知f(x)=xlnx+mx,g(x)=-x2+ax-3.
(1)若函数f(x)在(1,+∞)上为单调函数,求实数m的取值范围;
(2)若当m=0时,对任意x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围.

分析 (1)求出函数的导数,根据函数的单调性得到关于m的不等式,解出即可;
(2)问题转化为$a≤2lnx+x+\frac{3}{x}$对一切x∈(0,+∞)恒成立,设$h(x)=2lnx+x+\frac{3}{x}(x>0)$,根据函数的单调性求出h(x)的最小值,从而求出a的范围即可.

解答 解:(1)f(x)定义域为(0,+∞),f'(x)=lnx+(1+m),
因为f(x)在(1,+∞)上为单调函数,
则方程lnx+(1+m)=0在(1,+∞)上无实根,
故1+m≥0,则m≤-1.
(2)2xlnx≥-x2+ax-3,则$a≤2lnx+x+\frac{3}{x}$对一切x∈(0,+∞)恒成立.
设$h(x)=2lnx+x+\frac{3}{x}(x>0)$,则$h'(x)=\frac{{({x+3})({x-1})}}{x^2}$,
当x∈(0,1),h'(x)<0,h(x)单调递减,
当x∈(1,+∞),h'(x)>0,h(x)单调递增,
h(x)在(0,+∞)上,有唯一极小值h(1),即为最小值,
所以h(x)min=h(1)=4,
因为对任意x∈(0,+∞),2f(x)≥g(x)恒成成立,
故a≤4.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知圆C过两点M(-3,3),N(1,-5),且圆心C在直线2x-y-2=0上.
(Ⅰ)求圆C的标准方程;
(Ⅱ)直线l过点(-2,5)且与圆C有两个不同的交点A,B,若直线l的斜率k大于0,求k的取值范围;
(Ⅲ)在(Ⅱ)的条件下,是否存在直线l使得弦AB的垂直平分线过点P(3,-1),若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.数列{an}的通项公式an=ncos$\frac{nπ}{2}$,其前n项和为Sn,则S2013等于(  )
A.1006B.2012C.503D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=cos(wx+φ)(w>0,0<φ<\frac{π}{2})$的最小正周期为π,且$f(\frac{π}{3})=-\frac{{\sqrt{3}}}{2}$.
(1)求w和φ的值;
(2)若$f(x)>\frac{1}{2}$,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等比数列{an}各项均为正数,公比为q,满足an+1<an,a2a8=6,a4+a6=5,则q2=(  )
A.$\frac{5}{3}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知p:?x∈R,mx2+1>0,q:?x∈R,x2+mx+1≤0.
(1)写出命题p的否定?p,命题q的否定?q;
(2)若?p∨?q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点A,B分别在射线CM,CN(不含端点C)上运动,$∠MCN=\frac{2π}{3}$,在△ABC中,角A,B,C所对的边分别是a,b,c.
(1)若b是a和c的等差中项,且c-a=4,求c的值;
(2)若$c=\sqrt{3}$,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}中,a1=1,前n项和为Sn,且点P(an,an+1)在直线y=x+1上,则$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{S_n}$=(  )
A.$\frac{2n}{n+1}$B.$\frac{2}{n(n+1)}$C.$\frac{n(n+1)}{2}$D.$\frac{n}{2(n+1)}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.有一个不透明的袋子,装有4个完全相同的小球,球上分别编有数字1,2,3,4.
(Ⅰ)若逐个不放回取球两次,求第一次取到球的编号为偶数且两个球的编号之和能被3整除的概率;
(Ⅱ)若先从袋中随机取一个球,该球的编号为a,将球放回袋中,然后再从袋中随机取一个球,该球的编号为b,求直线ax+by+1=0与圆x2+y2=$\frac{1}{16}$没有公共点的概率.

查看答案和解析>>

同步练习册答案