【题目】已知函数f(x)=4cosxsin(x)+a的最大值为2.
(1)求实数a的值;
(2)在给定的直角坐标系上作出函数f(x)在[0,π]上的图象:
(3)求函数f(x)在[,]上的零点,
【答案】(1);(2)作图见解析;(3)零点为和.
【解析】
(1)利用正弦的和角公式,以及辅助角公式化简为标准型正弦函数,根据其最大值,即可求得参数;
(2)根据(1)中所求,列表、描点,即可求得函数在区间上的图象;
(3)求出在上的零点,再与取交集即可求得结果.
(1)f(x)=4cosxsin(x)+a=4cosx(sinxcosx)+a
=2sinxcosx+2cos2x+a
sin2x+cos2x+a+1=2sin(2x)+a+1
则f(x)的最大值为2+a+1=2,得a=﹣1.
(2)由(1)可得
列表如下:
用“五点法”画出函数f(x)在区间[0,π]的简图,如图所示;
(3)由得2xkπ,k∈Z,
则x,k∈Z,
由,得,即k=0或k=1,
当k=0时,x,当k=1时,x,
即函数在[,]上的零点为和.
科目:高中数学 来源: 题型:
【题目】风景秀美的宝湖畔有四棵高大的银杏树,记作A,B,P,Q,湖岸部分地方围有铁丝网不能靠近.欲测量P,Q两棵树和A,P两棵树之间的距离,现可测得A,B两点间的距离为100 m,∠PAB=75°,∠QAB=45°,∠PBA=60°,∠QBA=90°,如图所示.则P,Q两棵树和A,P两棵树之间的距离各为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面ABCD为梯形,,则在面PBC内
A. 一定存在与CD平行的直线
B. 一定存在与AD平行的直线
C. 一定存在与AD垂直的直线
D. 不存在与CD垂直的直线
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“剑桥学派”创始人之一数学家哈代说过:“数学家的造型,同画家和诗人一样,也应当是美丽的”;古希腊数学家毕达哥拉斯创造的“黄金分割”给我们的生活处处带来美;我国古代数学家赵爽创造了优美“弦图”.“弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,则等于( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左,右顶点分别为右焦点为,直线是椭圆在点处的切线.设点是椭圆上异于的动点,直线与直线的交点为,且当时, 是等腰三角形.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设椭圆的长轴长等于,当点运动时,试判断以为直径的圆与直线的位置关系,并加以证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂生产、两种元件,其质量按测试指标划分为:大于或等于为正品,小于为次品.现从一批产品中随机抽取这两种元件各件进行检测,检测结果记录如下:
B |
由于表格被污损,数据、看不清,统计员只记得,且、两种元件的检测数据的平均值相等,方差也相等.
(1)求表格中与的值;
(2)从被检测的件种元件中任取件,求件都为正品的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一条动直线3(m+1)x+(m-1)y-6m-2=0,
(1)求证:直线恒过定点,并求出定点P的坐标;
(2)若直线与x、y轴的正半轴分别交于A,B两点,O为坐标原点,是否存在直线满足下列条件:①△AOB的周长为12;②△AOB的面积为6,若存在,求出方程;若不存在,请说明理由.
(3)若直线与x、y轴的正半轴分别交于A,B两点,当取最小值时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某次考试后,对全班同学的数学成绩进行整理,得到表:
分数段 | ||||
人数 | 5 | 15 | 20 | 10 |
将以上数据绘制成频率分布直方图后,可估计出本次考试成绩的中位数是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com