精英家教网 > 高中数学 > 题目详情
10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点分别为A、B,且长轴长为8,T为椭圆上一点,直线TA、TB的斜率之积为-$\frac{3}{4}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为原点,过点M(0,2)的动直线与椭圆C交于P、Q两点,求$\overrightarrow{OP}$•$\overrightarrow{OQ}$+$\overrightarrow{MP}$•$\overrightarrow{MQ}$的取值范围.

分析 (Ⅰ)求得直线TA,TB的斜率,由$\frac{y}{x+4}$•$\frac{y}{x-4}$=-$\frac{3}{4}$,即可求得椭圆C的方程;
(Ⅱ)设直线PQ方程,代入椭圆方程,利用韦达定理及向量数量积的坐标,求函数的单调性,即可求得$\overrightarrow{OP}$•$\overrightarrow{OQ}$+$\overrightarrow{MP}$•$\overrightarrow{MQ}$的取值范围.

解答 解:(Ⅰ)设T(x,y),则直线TA的斜率为k1=$\frac{y}{x+4}$,直线TB的斜率为k2=$\frac{y}{x-4}$,.…(2分)
于是由k1k2=-$\frac{3}{4}$,得$\frac{y}{x+4}$•$\frac{y}{x-4}$=-$\frac{3}{4}$,
整理得$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1$;…(4分)
(Ⅱ)当直线PQ的斜率存在时,设直线PQ的方程为y=kx+2,点P,Q的坐标分别为(x1,y1),(x2,y2),
直线PQ与椭圆方程联立$\left\{\begin{array}{l}{y=kx+2}\\{\frac{{x}^{2}}{16}+\frac{{y}^{2}}{12}=1}\end{array}\right.$,得(4k2+3)x2+16kx-32=0.
所以,x1+x2=-$\frac{16k}{4{k}^{2}+3}$,x1x2=-$\frac{32}{4{k}^{2}+3}$.…(6分)
从而$\overrightarrow{OP}$•$\overrightarrow{OQ}$+$\overrightarrow{MP}$•$\overrightarrow{MQ}$=x1x2+y1y2+[x1x2+(y1-2)(y2-2)],
=2(1+k2)x1x2+2k(x1+x2)+4
=$\frac{-80{k}^{2}-52}{4{k}^{2}+3}$=-20+$\frac{8}{4{k}^{2}+3}$.…(8分)
-20<$\overrightarrow{OP}$•$\overrightarrow{OQ}$+$\overrightarrow{MP}$•$\overrightarrow{MQ}$≤-$\frac{52}{3}$,…(10分)
当直线PQ斜率不存在时$\overrightarrow{OP}$•$\overrightarrow{OQ}$+$\overrightarrow{MP}$•$\overrightarrow{MQ}$的值为-20,
综上所述$\overrightarrow{OP}$•$\overrightarrow{OQ}$+$\overrightarrow{MP}$•$\overrightarrow{MQ}$的取值范围为[-20,-$\frac{52}{3}$].…(12分)

点评 本题考查椭圆方程的求法,直线与椭圆的位置关系,考查韦达定理及向量数量积的坐标运算,函数单调性及最值与椭圆的综合应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,若该几何体的各个顶点在某一个球面上,则该球面的表面积为48π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,ABCD是边长为3的正方形,ABEF是矩形,平面ABCD⊥平面ABEF,G为EC的中点.
(Ⅰ)求证:AC∥平面BFG;
(Ⅱ)若三棱锥C-DGB的体积为$\frac{9}{4}$,求三棱柱ADF-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设各项均为正数的数列{an}的前n项和为Sn,且满足2$\sqrt{{S}_{n}}$=an+1(n∈N*).
(Ⅰ)求数列{an}的通项公式;  
(Ⅱ)若bn=(an+1)•2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}为等差数列,数列{bn}为等比数列,且满足a2016+a2017=π,b20b21=4,则tan$\frac{{a}_{1}+{a}_{4032}}{2+{b}_{19}{b}_{22}}$=(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,以椭圆的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M,N.
(1)求椭圆C的方程;
(2)求$\overrightarrow{TM}$•$\overrightarrow{TN}$的最小值,并求此时圆T的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线 $C:\frac{x^2}{4}+{y^2}=1$,直线l的极坐标方程为$2ρcos(θ-\frac{π}{3})=1$.
(1)写出曲线C的参数方程及直线l的普通方程;
(2)设曲线C的左顶点为A,直线l与x轴的交点为B,动点P在曲线C上运动,求|PA|2+|PB|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若某几何体的三视图如图所示,其中正视图与侧视图是两个全等的等腰三角形,则此几何体的表面积是(  )
A.36πB.30πC.24πD.15π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{{x}^{2}+4x+1,x≤0}\end{array}\right.$,
(1)求函数f(x)的零点;
(2)g(x)=f(x)-a 若函数g(x)有四个零点,求a的取值范围;
(3)在(2)的条件下,记g(x)得四个零点从左到右分别为x1,x2,x3,x4,求x1+x2+x3x4值.

查看答案和解析>>

同步练习册答案