15£®ÈçͼÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÒÔÍÖÔ²µÄ×ó¶¥µãTΪԲÐÄ×÷Ô²T£º£¨x+2£©2+y2=r2£¨r£¾0£©£¬ÉèÔ²TÓëÍÖÔ²C½»ÓÚµãM£¬N£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Çó$\overrightarrow{TM}$•$\overrightarrow{TN}$µÄ×îСֵ£¬²¢Çó´ËʱԲTµÄ·½³Ì£®

·ÖÎö £¨1£©ÔËÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍ¶¥µã×ø±ê£¬½áºÏa£¬b£¬cµÄ¹ØÏµ£¬¿ÉµÃÍÖÔ²·½³Ì£»
£¨2£©ÉèM£¨m£¬n£©£¬ÓɶԳÆÐԿɵÃN£¨m£¬-n£©£¬´úÈëÍÖÔ²·½³Ì£¬ÔÙÓÉÏòÁ¿ÊýÁ¿»ýµÄ×ø±ê±íʾ£¬×ª»¯Îª¹ØÓÚmµÄ¶þ´Îº¯Êý£¬Åä·½£¬½áºÏÍÖÔ²µÄ·¶Î§£¬¿ÉµÃ×îСֵ£¬½ø¶øµÃµ½MµÄ×ø±ê£¬¿ÉµÃÔ²µÄ·½³Ì£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬ÍÖÔ²µÄ×ó¶¥µãT£¨-2£¬0£©£¬
¿ÉµÃa=2£¬c=$\sqrt{3}$£¬b=$\sqrt{{a}^{2}-{c}^{2}}$=1£¬
ÔòÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{4}$+y2=1£»
£¨2£©ÉèM£¨m£¬n£©£¬ÓɶԳÆÐԿɵÃN£¨m£¬-n£©£¬
¼´ÓÐ$\frac{{m}^{2}}{4}$+n2=1£¬
Ôò$\overrightarrow{TM}$•$\overrightarrow{TN}$=£¨m+2£¬n£©•£¨m+2£¬-n£©=£¨m+2£©2-n2=£¨m+2£©2-1+$\frac{{m}^{2}}{4}$=$\frac{5}{4}$m2+4m+3
=$\frac{5}{4}$£¨m+$\frac{8}{5}$£©2-$\frac{1}{5}$£¬
ÓÉ-2¡Üm¡Ü2£¬¿ÉµÃm=-$\frac{8}{5}$ʱ£¬$\overrightarrow{TM}$•$\overrightarrow{TN}$µÄ×îСֵΪ-$\frac{1}{5}$£¬
´Ëʱn2=$\frac{9}{25}$£¬
¼´ÓÐr2=£¨m+2£©2+n2=$\frac{13}{25}$£¬
¿ÉµÃÔ²TµÄ·½³Ì£¨x+2£©2+y2=$\frac{13}{25}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½£¬¿¼²éÏòÁ¿ÊýÁ¿»ýµÄ×îСֵ£¬×¢ÒâÔËÓöþ´Îº¯ÊýµÄ×îÖµÇ󷨺ÍÍÖÔ²µÄÐÔÖÊ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖª¶¨ÒåÔÚRÉÏµÄÆæº¯Êýf£¨x£©ÔÚ[0£¬+¡Þ£©Éϵݼõ£¬Èôf£¨x3-2x+a£©£¼f£¨x+1£©¶Ôx¡Ê[-1£¬2]ºã³ÉÁ¢£¬ÔòaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨-3£¬+¡Þ£©B£®£¨-¡Þ£¬-3£©C£®£¨3£¬+¡Þ£©D£®£¨-¡Þ£¬3£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ËÄÀâ×¶P-ABCDÖУ¬PB¡Íµ×ÃæABCD£¬CD¡ÍPD£¬µ×ÃæABCDΪֱ½ÇÌÝÐΣ¬AD¡ÎBC£¬AB¡ÍBC£¬AB=AD=PB=3£¬µãEÔÚÀâPAÉÏ£¬ÇÒPE=2EA£®
£¨¢ñ£©ÇóÖ¤£ºPC¡ÎÆ½ÃæEBD£»
£¨¢ò£©ÇóµãAµ½Æ½ÃæBEDµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖªM£¬FΪÍÖÔ²µÄ$C£º\frac{x^2}{20}+\frac{y^2}{16}=1$µÄÉ϶¥µãºÍÓÒ½¹µã£¬Ö±ÏßlÓëÍÖÔ²C½»ÓëA£¬BÁ½µã£¬ÇÒÈý½ÇÐΡ÷MABµÄÖØÐÄǡΪF£¬ÔòÖ±ÏßlµÄ·½³ÌΪ6x-5y-28=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ¶¥µã·Ö±ðΪA¡¢B£¬ÇÒ³¤Ö᳤Ϊ8£¬TΪÍÖÔ²ÉÏÒ»µã£¬Ö±ÏßTA¡¢TBµÄбÂÊÖ®»ýΪ-$\frac{3}{4}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèOΪԭµã£¬¹ýµãM£¨0£¬2£©µÄ¶¯Ö±ÏßÓëÍÖÔ²C½»ÓÚP¡¢QÁ½µã£¬Çó$\overrightarrow{OP}$•$\overrightarrow{OQ}$+$\overrightarrow{MP}$•$\overrightarrow{MQ}$µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªÇúÏßE£º$\frac{x^2}{a^2}+{y^2}$=1£¨a£¾b£¬a¡Ù1£©ÉÏÁ½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¨x1¡Ùx2£©£®
£¨1£©ÈôµãA£¬B¾ùÔÚÖ±Ïßy=2x+1ÉÏ£¬ÇÒÏß¶ÎABÖеãµÄºá×ø±êΪ-$\frac{1}{3}$£¬ÇóaµÄÖµ£»
£¨2£©¼Ç$\overrightarrow m=£¨\frac{x_1}{a}£¬{y_1}£©£¬\overrightarrow n=£¨\frac{x_2}{a}£¬{y_2}£©$£¬Èô$\overrightarrow m¡Í\overrightarrow n$Îª×ø±êÔ­µã£¬ÊÔ̽Çó¡÷OABµÄÃæ»ýÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³ö¶¨Öµ£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑ֪ij¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÄÚÇÐÇòµÄ±íÃæ»ýΪ£¨¡¡¡¡£©
A£®$\frac{2¦Ð}{3}$B£®$\frac{4¦Ð}{3}$C£®3¦ÐD£®4¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îd¡Ù0£¬ÇÒa2=-d£¬ÈôakÊÇa6Óëak+6µÄµÈ±ÈÖÐÏÔòk=£¨¡¡¡¡£©
A£®5B£®6C£®9D£®11

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªf£¨x£©=ax2-2£¨a+1£©x+3£¨a¡ÊR£©£®
£¨1£©Èôº¯Êýf£¨x£©ÔÚ$[{\frac{3}{2}£¬3}]$µ¥µ÷µÝ¼õ£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©Áîh£¨x£©=$\frac{f£¨x£©}{x-1}$£¬Èô´æÔÚ${x_1}£¬{x_2}¡Ê[{\frac{3}{2}£¬3}]$£¬Ê¹µÃ|h£¨x1£©-h£¨x2£©|¡Ý$\frac{a+1}{2}$³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸