精英家教网 > 高中数学 > 题目详情
2.不等式-x2+3x-5≥0的解集是(  )
A.RB.C.R+D.R-

分析 根据题意,将-x2+3x-5≥0变形为x2-3x+5≤0,由一元二次不等式的解法计算可得答案.

解答 解:根据题意,-x2+3x-5≥0⇒x2-3x+5≤0,
其中△=(-3)2-4×5=-11<0,
则不等式-x2+3x-5≥0的解集是∅;
故选:B.

点评 本题考查一元二次不等式的解法,关键是掌握一元二次不等式与一元二次函数的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.为了培养学生的数学建模和应用能力,某校组织了一次实地测量活动,如图,假设待测量的树木AE的高度H(m),垂直放置的标杆BC的高度h=4m,仰角∠ABE=α,∠ADE=β(D,C,E三点共线),试根据上述测量方案,回答如下问题:
(1)若测得α=60°、β=30°,试求H的值;
(2)经过分析若干次测得的数据后,大家一致认为适当调整标杆到树木的距离d(单位:m),使α与β之差较大时,可以提高测量精确度.
若树木的实际高度为8m,试问d为多少时,α-β最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且过点($\frac{1}{2},-\frac{\sqrt{14}}{4}$),点A(x0,y0)为椭圆C上的点,且以A为圆心的圆过椭圆C的右焦点F.
(Ⅰ)求椭圆C的方程;
(Ⅱ)记M(0,y1)、N(0,y2)是圆A上的两点,若|FM|•|FN|>p恒成立,求实数p的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在区间[0,4]内随机选一个实数x,该实数恰好在区间[1,3]内的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆O以AB为直径,半径为1.若圆O上有长度为1的动弦CD,则$\overrightarrow{AC}•\overrightarrow{BD}$的取值范围是[-$\frac{3}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆x2+y2-2x-4y+3=0关于直线ax+by-2=0(a>0,b>0)对称,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在三棱锥P-ABC中,PA⊥平面ABC,平面PAC⊥平面PBC,则直角△ABC中的三个角A,B,C中,角为直角C(从A,B,C中选择一个填空)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某单位有职工480人,其中青年职工210人,中年职工150人,老年职工120人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为(  )
A.4B.5C.7D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.我舰在敌岛A南偏西50°距离A岛12海里的B处,发现敌舰正由A岛沿北偏西10°的方向以10海里/小时的速度航行,若我舰要用2小时追上敌舰,则我舰的速度大小为14.

查看答案和解析>>

同步练习册答案