精英家教网 > 高中数学 > 题目详情
方程|x-1|=
1-(y-1) 2
表示的曲线是(  )
A、1个圆B、半圆
C、2个半圆D、无法确定
考点:圆的标准方程
专题:计算题,直线与圆
分析:将题中的方程化简整理,得到(x-1)2+(y-1)2=1,再观察x、y的取值范围,可得该方程表示一个圆.
解答: 解:将方程|x-1|=
1-(y-1) 2
化简,
得(x-1)2+(y-1)2=1,其中0≤x≤2,0≤y≤2.
因此方程|x-1|=
1-(y-1) 2
表示以C(1,1)为圆心,半径r=1的圆.
故选:A
点评:本题给出关于x、y的方程,求方程表示的曲线类型.着重考查了圆的标准方程及其应用的知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

i
j
分别表示平面直角坐标系x、y轴上的单位向量,且|
a
-
i
|+|
a
-2
j
|=
5
,则|
a
+2
i
|的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点为F1、F2,以F1F2为直径的圆与椭圆交于点P,若△F1PF2的面积为16,则该椭圆的短轴长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

集合{a,b}的子集个数
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公比为q的等比数列{an}的前n项和为Sn,n∈N*,则下列结论中:
(1)Sn,S2n-Sn,S3n-S2n成等比数列;
(2)(S2n-Sn)2=Sn(S3n-S2n)
(3)S3n-S2n=qn(S2n-Sn)
正确的结论为(  )
A、(1)(2)
B、(1)(3)
C、(2)(3)
D、(1)(2)(3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点分别为F1,F2,|F1F2|=
10
,P是y轴正半轴上一点,PF1交椭圆于点A,若AF2⊥PF1,且△APF2的内切圆半径为
2
2
,则椭圆的离心率是(  )
A、
5
4
B、
5
3
C、
5
10
D、
15
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,3),
b
=(1,4),
c
=(k,3),(
a
+
b
)⊥
c
,则实数k=(  )
A、-7B、-2C、2D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax,若f(x)是定义在(-1,1)上的减函数,且f(a-1)>f(2a),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x=
5
2
,则
x+1
-
x-1
x+1
+
x-1
+
x+1
+
x-1
x+1
-
x-1

查看答案和解析>>

同步练习册答案