精英家教网 > 高中数学 > 题目详情
17.过点(2,3)且与直线2x-3y-2=0平行的直线的点方向式方程是(  )
A.2(x-2)+3(y-3)=0B.$\frac{x-2}{-3}$=$\frac{y-3}{2}$C.3(x-2)+2(y-3)=0D.$\frac{x-2}{3}$=$\frac{y-3}{2}$

分析 所求直线的方向向量为(3,2),又经过点(2,3),即可得出所求直线的点方向式方程.

解答 解:所求直线的方向向量为(3,2),又经过点(2,3),
因此所求直线的点方向式方程是$\frac{x-2}{3}=\frac{y-3}{2}$.
故选:D.

点评 本题考查了直线的点方向式方程,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在△ABC中,内角A,B,C的对边分别为a,b,c,且a2+b2-c2=ab=$\sqrt{3}$,则△ABC的面积为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{3}{4}$C.$\frac{\sqrt{3}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设$\overrightarrow m,\overrightarrow n$是两个不共线的向量,若$\overrightarrow{AB}=\overrightarrow m+5\overrightarrow n,\overrightarrow{BC}=-2\overrightarrow{m}+8\overrightarrow n,\overrightarrow{CD}=4\overrightarrow m+2\overrightarrow n$,则(  )
A.A,B,C三点共线B.A,B,D三点共线C.A,C,D三点共线D.B,C,D三点共线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.有下列说法:
①若向量$\overrightarrow{AB}$、$\overrightarrow{CD}$满足|$\overrightarrow{AB}$|>|$\overrightarrow{CD}$|,且$\overrightarrow{AB}$与$\overrightarrow{CD}$方向相同,则$\overrightarrow{AB}$>$\overrightarrow{CD}$;
②|$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|;
③共线向量一定在同一直线上;
④由于零向量的方向不确定,故其不能与任何向量平行;
其中正确说法的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2.
(1)若$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为45°,求|$\overrightarrow{a}$+$\overrightarrow{b}$|
(2)若($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知正项数列{an}的前三项分别为1,3,5,Sn为数列的前n项和,满足:nS2n+1-(n+1)S2n=(n+1)(3n3+An2+Bn)(A,B∈R,n∈N*).
(1)求A,B的值;
(2)求数列{an}的通项公式;
(3)若数列{bn}满足(n+1)an=$\frac{{b}_{1}}{2}$+$\frac{{b}_{2}}{{2}^{2}}$+…+$\frac{{b}_{n}}{{2}^{n}}$(n∈N+),求数列{bn}的前n项和Tn
(参考公式:12+22+…+n2=$\frac{1}{6}$n(n+1)(2n+1))

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给定命题:p:x<3,q:$\frac{3-x}{x-2}$>0,则p是q的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,内角A、B、C的对边分别是a、b、c,若a+b≥2c,则∠C的最大度数是(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:
(1)$\frac{tan\frac{5π}{4}+tan\frac{5π}{12}}{1-tan\frac{5π}{12}}$;
(2)$\frac{sin(α+β)-2sinαcosβ}{2sinαsinβ+cos(α+β)}$.

查看答案和解析>>

同步练习册答案