精英家教网 > 高中数学 > 题目详情
已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的虚轴长是实轴长的2倍,则此双曲线的离心率为(  )
A、
2
B、2
C、
3
D、
5
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:由已知条件推导出b=2a,由此能求出此双曲线的离心率.
解答: 解:∵双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的虚轴长是实轴长的2倍,
∴b=2a,∴c=
a2+b2
=
5
a

∴e=
c
a
=
5

故选:D.
点评:本题考查双曲线的离心率的求法,是基础题,解题时要认真审题,注意双曲线基本性质的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A∪B∪C={1,2,…10},则满足条件的集合的有序三元组(A,B,C)的个数为
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c,d∈R,则“a>b,c>d”是“ac>bd”成立的 (  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=-x2+bx+c,若关于x的不等式f(x-1)≥0的解集为[0,1],则关于x的不等式f(x+1)≤0的解集为(  )
A、[2,3]
B、(-∞,2]∪[3,+∞)
C、[-2,-1]
D、(-∞,-2]∪[-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=sin(2x-θ)的图象F向右平移
π
6
个单位长度得到图象F′,若F′的一个对称中心是(
3
8
π,0),则θ的一个可能取值是(  )
A、-
11
12
π
B、
11
12
π
C、-
5
12
π
D、
5
12
π

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,已知a1=2,且a2,a1+a3,a4成等差数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)求数列{log2an-an}的前n项和为Sn
(Ⅲ) 设bn=
1
log2an+1log2an
,求证:b1+b2+…+bn
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,b=4,A=
π
3
,面积S=2
3

(1)求BC边的长度;
(2)求值:
sin2(
A
4
+
π
4
)+cos2B
cot
C
2
+tan
C
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a∈R,函数f(x)=lnx+
1
x
+ax

(Ⅰ)当a=0时,求f(x)的最小值;
(Ⅱ)若f(x)在区间[2,+∞)上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
m
n
,其中向量
m
=(2cosx,1),
n
=(cosx,
3
sin2x),x∈R
(1)求f(x)的最小正周期;   
(2)△ABC中,f(A)=2,a=
3
,b+c=3(b>c)求b,c的值.

查看答案和解析>>

同步练习册答案