精英家教网 > 高中数学 > 题目详情
5.在△ABC中,若sinA:sinB:sinC=7:8:13,则角C=(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{5π}{6}$

分析 由正弦定理可知a:b:c=7:8:13,再利用余弦定理计算cosC即可.

解答 解:由正弦定理可知a:b:c=sinA:sinB:sinC=7:8:13,
不妨设a=7,b=8,c=13,
由余弦定理得cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{49+64-169}{2×7×8}$=-$\frac{1}{2}$,
∴C=$\frac{2π}{3}$.
故选A.

点评 本题考查了正弦定理,余弦定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=lnx-\frac{1}{2}a{x^2}$(a∈R).
(1)若f(x)在点(2,f(2))处的切线与直线2x+y+2=0垂直,求实数a的值;
(2)求函数f(x)的单调区间;
(3)讨论函数f(x)在区间[1,e2]上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.椭圆ax2+by2=1(a>0,b>0,且a≠b)与直线x+y-1=0相交于A,B两点,C是AB的中点,若|AB|=2$\sqrt{2}$,直线OC的斜率为$\frac{\sqrt{2}}{2}$,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\sqrt{3}$cos2x+$\frac{1}{2}$sin2x.
(1)求f(x)的最小正周期; 
(2)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{4}$]上的最大值和最小值.
(3)求f(x)的单调区间;
(4)求f(x)的对称轴和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4cosθ,曲线M的直角坐标方程为x-2y+2=0(x>0)
(1)以曲线M上的点与点O连线的斜率k为参数,写出曲线M的参数方程;
(2)设曲线C与曲线M的两个交点为A,B,求直线OA与直线OB的斜率之和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知tan(θ-π)=2,则sin2θ+sinθcosθ-2cos2θ=$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知下列命题:
①命题“?x∈R,x2+1>3x“的否定是“?x∈R,x2+1≤3x“
②已知p,q为两个命题,若“p∨q”为假命题“(¬p)∧(¬q)”为真命题;
③“a>2”是“a>5”的充分不必要条件;
④“若xy=0,则x=0且y=0”的逆否命题为真命题.
其中所有真命题的序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知样本数据1,2,4,3,5,下列说法不正确的是(  )
A.平均数是3B.中位数是4C.极差是4D.方差是2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.观察数组:(1,1,1),(3,2,6),(5,4,20),(7,8,56),(a,b,c),…,则a+b+c=169.

查看答案和解析>>

同步练习册答案