精英家教网 > 高中数学 > 题目详情
13.动圆M过点F(0,2)且与直线y=-2相切,则圆心M的轨迹方程是x2=8y.

分析 根据题意,分析可得M的轨迹为以F(0,2)为焦点,直线y=-2为准线的抛物线,由抛物线的定义分析可得答案.

解答 解:根据题意,动圆的圆心M到点F(0,2)与到直线y=-2的距离相等,
则M的轨迹为以F(0,2)为焦点,直线y=-2为准线的抛物线,
其抛物线中p=4,
则其轨迹方程为:x2=8y;
故答案为:x2=8y

点评 本题考查轨迹的求法,涉及抛物线的定义,关键是掌握抛物线的定义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图所示,在Rt△ABC中,AC⊥BC,有AC2+BC2=AB2;类比猜想:直角四面体P-ABC(即PA⊥PB,PB⊥PC,PC⊥PA)的四个面的面积关系,证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在直角坐标系xOy中,已知点P(1,-2),直线l:$\left\{\begin{array}{l}{x=1+m}\\{y=-2+m}\end{array}\right.$(m 为参数),以坐标原点为极点,以 x轴的正半轴为极轴建立极坐标系;曲线C的极坐标方程为ρsin2θ=3cosθ;直线l与曲线C的交点为A,B.
(1)求直线l和曲线C的普通方程;
(2)求$\frac{1}{|PA|}$+$\frac{1}{|PB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C所对边的长分别为a,b,c,若A=45°,a=$\sqrt{2}$,B=60°,则b=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列几项调查,适合普查的是(  )
A.调查全省食品市场上某种食品的色素含量是否符合国家标准
B.调查某城市某天的空气质量
C.调查所在班级全体学生的身高
D.调查全省初中生每人每周的零花钱数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知f(x)=$\sqrt{3}$sinxcosx-sin2x,将f(x)的图象向右平移$\frac{π}{12}$个单位,再向上平移2个单位,得到y=g(x)的图象;若对任意实数x,都有g(a-x)=g(a+x)成立,则g(2a+$\frac{π}{2}$)+g($\frac{π}{4}$)=(  )
A.4B.3C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.不等式lg|x+1|<0的解集为(  )
A.(-∞,-1]B.(-2,0)C.[-2,-1)∪(-1,0)D.(-2,-1)∪(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知将函数$g(x)=sin(x+\frac{π}{3}+φ)(φ∈R)$图象上的每一点纵坐标不变,横坐标变为原来的$\frac{1}{2}$后所得的图象向右平移$\frac{π}{6}$与f(x)图象重合,若$f(x)≤|f(\frac{π}{6})|$对x∈R恒成立,且$f(\frac{π}{2})>f(π)$,则f(x)的单调递增区间是(  )
A.$[kπ-\frac{π}{3},kπ+\frac{π}{6}](k∈Z)$B.$[kπ,kπ+\frac{π}{2}](k∈Z)$C.$[kπ+\frac{π}{6},kπ+\frac{2π}{3}](k∈Z)$D.$[kπ-\frac{π}{2},kπ](k∈Z)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.2017年高考特别强调了要增加对数学文化的考查,为此瓦房店市高级中学高三年级数学组特命制了一套与数学文化有关的专题训练卷(文、理科试卷满分均为100分),并对整个高三年级的学生进行了测试.现从这些学生中随机抽取了50名学生的成绩,按照成绩为[50,60),[60,70),…,[90,100]分成了5组,制成了如图所示的频率分布直方图(假定每名学生的成绩均不低于50分).
(1)求频率分布直方图中的x的值,并估计所抽取的50名学生成绩的平均数、中位数(同一组中的数据用该组区间的中点值代表,中位数请用分数表示);
(2)若高三年级共有700名学生,试估计高三学生中这次测试成绩不低于70分的人数;
(3)若利用分层抽样的方法从样本中成绩不低于70分的三组学生中抽取6人,再从这6人中随机抽取3人参加这次考试的考后分析会,试求后两组中至少有1人被抽到的概率.

查看答案和解析>>

同步练习册答案