分析 (I)由中位线定理得出DE∥BC,故而BC∥平面ADE;
(II)证明BC⊥平面PAB,得出DE⊥平面PAB,于是VA-BDE=VD-ABE=$\frac{1}{3}$S△ABE•DE.
解答
证明:(Ⅰ)∵D为PC的中点,E为PB的中点,
∴DE为△PBC的中位线,∴DE∥BC,
∵DE?平面ADE,BC?平面ADE,
∴BC∥平面ADE.
解:(Ⅱ)∵PA⊥平面ABC,BC?平面ABC,
∴PA⊥BC,又BC⊥AB,PA∩AB=A,
∴BC⊥平面PAB,
由(Ⅰ)可知DE∥BC,
∴DE⊥平面PAB,
∵PA=AB=2,E是PB的中点,
∴S△ABE=$\frac{1}{2}$S△PAB=$\frac{1}{2}×2×2×\frac{1}{2}$=1,
又∵DE=$\frac{1}{2}$BC=1.
∴VA-BDE=VD-ABE=$\frac{1}{3}$×1×1=$\frac{1}{3}$.
点评 本题考查了线面平行的判定,棱锥的体积计算,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{12}<a≤\frac{1}{2}$ | B. | $a≤-\frac{1}{12}$或$a>\frac{1}{2}$ | C. | -4<a≤2 | D. | $-\frac{1}{2}≤a≤\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | $-\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com