精英家教网 > 高中数学 > 题目详情
17.已知坐标原点O到直线$\sqrt{2}$ax+by-1=0(a,b∈R)的距离为$\frac{{\sqrt{2}}}{2}$,点Q(0,-1)在以点P(a,b)为圆心的圆P上,则圆P的最大半径是$\sqrt{2}$+1.

分析 利用坐标原点O到直线$\sqrt{2}$ax+by-1=0(a,b∈R)的距离为$\frac{{\sqrt{2}}}{2}$,得出$\frac{1}{\sqrt{2{a}^{2}+{b}^{2}}}$=$\frac{{\sqrt{2}}}{2}$,即2a2+b2=2,由|QP|2=a2+(b+1)2=$\frac{1}{2}$(b+2)2≤$\frac{1}{2}$($\sqrt{2}$+2)2,即可求出|QP|的最大值.

解答 解:∵坐标原点O到直线$\sqrt{2}$ax+by-1=0(a,b∈R)的距离为$\frac{{\sqrt{2}}}{2}$,
∴$\frac{1}{\sqrt{2{a}^{2}+{b}^{2}}}$=$\frac{{\sqrt{2}}}{2}$,
∴2a2+b2=2,
|QP|2=a2+(b+1)2=$\frac{1}{2}$(b+2)2≤$\frac{1}{2}$($\sqrt{2}$+2)2,∴|QP|的最大值为$\sqrt{2}$+1,
故答案为$\sqrt{2}$+1.

点评 本题考查点与直线距离公式的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{BA}=(1,-3)$,向量$\overrightarrow{BC}=(4,-2)$,则△ABC的形状为(  )
A.等腰直角三角形B.等边三角形
C.直角非等腰三角形D.等腰非直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,命题q:f(x)=(4-3a)x是增函数,若p或q为真,p且q为假.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法正确的是(  )
A.命题“2≥1”是假命题
B.命题“?x∈R,x2+1>0”的否定是:$?{x_0}∈R,{x_0}^2+1$<0
C.命题“若2a>2b,则a>b”的否命题是“若2a>2b,则a≤b”
D.“x>1”是“x2+x+2>0”充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若2是函数f(x)=x3-ax(a∈R)的零点,则在(0,a)内任取一点x0,使lnx0<0的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,向一个圆台型容器(下底比上底口径宽)匀速注水(单位时间注水体积相同),注满为止,设已注入的水体积为v,高度为h,时间为t,则下列反应变化趋势的图象正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合S={x|x2-5x+6≥0},T={x|x>1},则S∩T=(  )
A.[2,3]B.(1,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直线l的方向向量为$\vec s=(1,2,x)$,平面α的法向量$\vec n=(-2,y,2)$,若l?α,则xy的最大值为(  )
A.1B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知某几何体的三视图如图所示,则其体积为(  )
A.$2\sqrt{3}$B.$\frac{{5\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步练习册答案