精英家教网 > 高中数学 > 题目详情
2.如图,向一个圆台型容器(下底比上底口径宽)匀速注水(单位时间注水体积相同),注满为止,设已注入的水体积为v,高度为h,时间为t,则下列反应变化趋势的图象正确的是(  )
A.B.C.D.

分析 容器内对应的水的高度h随时间的t的增加而增加,且增加的速度越来越快,即可判断答案.

解答 解:向一个圆台型容器(下底比上底口径宽)匀速注水(单位时间注水体积相同),
则容器内对应的水的高度h随时间的t的增加而增加,且增加的速度越来越快,
故选:D.

点评 本题主要考查了函数的图象问题,在解题时要结合题意找出正确的函数的图象是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=alnx+2a,g(x)=x+$\frac{a}{x}$(其中a为常数,a∈R).
(Ⅰ)求函数g(x)的单调区间;
(Ⅱ)当a>0时,是否存在实数a,使得对于任意x1、x2∈[1,e]时,不等式f(x1)-g(x2)>0恒成立?如果存在,求a的取值范围;如果不存在,说明理由(其中e是自然对数的底数,e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.双曲线实半轴长为2,焦点为(-3,0)、(3,0),则该双曲线为(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1B.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{9}$=1C.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1D.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{5}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数$f(x)=Asin({ωx+φ})({A>0,ω>0,|φ|≤\frac{π}{2}})$的部分图象如图所示,其中$f({\frac{π}{3}})=0,f({\frac{7π}{12}})=-2$,给出下列结论:
①最小正周期为π;
②f(0)=1;
③函数$y=f({x-\frac{π}{6}})$是偶函数;
④$f({\frac{12π}{11}})<f({\frac{14π}{13}})$;
⑤$f(x)+f({\frac{4π}{3}-x})=0$.
其中正确结论的个数是(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知坐标原点O到直线$\sqrt{2}$ax+by-1=0(a,b∈R)的距离为$\frac{{\sqrt{2}}}{2}$,点Q(0,-1)在以点P(a,b)为圆心的圆P上,则圆P的最大半径是$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow a=(x-5,3),\overrightarrow b=(2,x)$且$\overrightarrow a⊥\overrightarrow b$则x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,则输出S=(  )
A.$\frac{5}{11}$B.$\frac{21}{11}$C.$\frac{13}{9}$D.$\frac{17}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知平面内动点C到点F(1,0)的距离比到直线$x=-\frac{1}{2}$的距离长$\frac{1}{2}$.
(1)求动点C的轨迹方程E;
(2)已知点A(4,0),过点A的直线l与曲线E交于不同的两点P,Q,证明:以PQ为直径的圆过原点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N等于(  )
A.{-2,-1,0,1}B.{-3,-2,-1,0}C.{-2,-1,0}D.{-3,-2,-1}

查看答案和解析>>

同步练习册答案