精英家教网 > 高中数学 > 题目详情
已知圆经过A(5,2)和B(3,-2)两点,且圆心在直线2x-y-3=0上,求该圆的方程.
考点:圆的标准方程
专题:计算题,直线与圆
分析:设圆C的圆心坐标为C(a,2a-3),再由圆C经过A(5,2)和B(3,-2)两点,可得|CA|2=|CB|2,即(a-5)2+(2a-3-2)2=(a-3)2+(2a-3+2)2,求得a的值,即可求得圆心坐标和半径,从而求得圆C的方程.
解答: 解:由于圆心在直线2x-y-3=0上,故可设圆C的圆心坐标为C(a,2a-3).
再由圆C经过A(5,2)和B(3,-2)两点,
可得|CA|=|CB|,∴|CA|2=|CB|2
∴(a-5)2+(2a-3-2)2=(a-3)2+(2a-3+2)2
解得a=2,故圆心C(2,1),半径r=
10

故圆C的方程为 (x-2)2+(y-1)2=10.
点评:本题主要考查求圆的标准方程的方法,求出圆心坐标和半径的值,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某化工厂生产的某种化工产品,当年产量在150吨至250吨之间时,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式近似地表示为y=
x2
10
-30x+4000.
问:每吨平均出厂价为16万元,年产量为多少吨时,可获得最大利润?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的表面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α、β满足0<α<
π
2
<β<π,cos(β-
π
4
)=
1
3
,sin(α+β)=
4
5

(1)求cos(α+
π
4
)的值;
(2)求sin2β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个底面半径为2,高为2的圆锥,其内接一长方体(底面在圆锥底面上,其他四个顶点在圆锥的母线上),如图是其图形及其一个轴截面图,若AC=2,长方体底面一边长为x.

(1)求内接长方体的高;
(2)当x为何值时内接长方体体积有最大值,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若函数f(x+1)=x2+2x,求函数f(x)的解析式.
(2)已知f(x)+2f(
1
x
)=3x+1,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,且椭圆经过点A(0,-1)
(Ⅰ)求椭圆E的方程;
(Ⅱ)如果过点H(0,
3
5
)的直线与椭圆E交于M、N两点(点M、N与点A不重合).
①若△AMN是以MN为底边的等腰三角形,求直线MN的方程;
②在y轴是否存在一点B,使得
BM
BN
,若存在求出点B的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosα,sinα)、
b
=(cosβ,sinβ)、
c
=(cosγ,sinγ),其中α,β,γ∈[-π,π],且满足
a
+2
b
+
c
=
0
求:
(1)
a
b
;     
(2)
b
a
+
b
-2
c
的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

圆C1:x2+y2+2ax+a2-4=0和圆C2:x2+y2-2by+b2-1=0相内切,若a,b∈R,且ab≠0,则
1
a2
+
1
b2
的最小值为
 

查看答案和解析>>

同步练习册答案