精英家教网 > 高中数学 > 题目详情
9.由三条直线x=0、x=2、y=0和曲线y=x3所围成的图形的面积为(  )
A.8B.$\frac{4}{3}$C.$\frac{18}{5}$D.4

分析 直接利用定积分公式求解即可.

解答 解:三条直线x=0、x=2、y=0和曲线y=x3所围成的图形的面积为:S=${∫}_{0}^{2}{x}^{3}dx$=$\frac{1}{4}{x}^{4}{|}_{0}^{2}$=4.
故选:D.

点评 本题考查定积分求解曲边梯形的面积,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=Asin($\frac{π}{2}$x+φ)(A>0)满足f(1)=0,则(  )
A.f(x-2)一定是奇函数B.f(x+1)一定是偶函数
C.f(x+3)一定是偶函数D.f(x-3)一定是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线L过抛物线C:x2=4y的焦点,且与y轴垂直,则L与C所围成的图形的面积等于$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,A=120°,c>b,a=$\sqrt{21}$,S△ABC=$\sqrt{3}$,求:
(1)边b,c的值.
(2)sinB+cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,右焦点为(2$\sqrt{2}$,0).斜率为1的直线l与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2).
(1)求椭圆G的方程;
(2)求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax2+2bx+c(x∈R,a≠0).
(Ⅰ)若a=-1,c=0,且y=f(x)在[-1,3]上的最大值为g(b),求g(b);
(Ⅱ)若a>0,函数f(x)在[-8,-2]上不单调,且它的图象与x轴相切,求$\frac{b-2a}{f(0)}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(2cos2x-1)sin2x+$\frac{1}{2}$cos4x..
(Ⅰ)求f(x)的最小正周期及单调减区间;
(Ⅱ)若x∈[0,$\frac{π}{8}$],求f(x)的最大值及取最大值时的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列四个命题:
(1)f(x)=$\sqrt{x-2}$+$\sqrt{1-x}$有意义;
(2)设x1,x2为y=f(x)的定义域内的任意两个变量,(x1-x2)[f(x1)-f(x2)]>0,则y=f(x)是定义域上的增函数;
(3)函数y=2x(x∈N)的图象是一条直线;
(4)函数y=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{-{x}^{2},x<0}\end{array}\right.$的图象是抛物线.
其中正确的命题个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知tan(α+$\frac{π}{4}$)=-3.
(1)求tan(α-π)的值;
(2)求sinαcosα的值.

查看答案和解析>>

同步练习册答案