精英家教网 > 高中数学 > 题目详情
19.已知tan(α+$\frac{π}{4}$)=-3.
(1)求tan(α-π)的值;
(2)求sinαcosα的值.

分析 (1)利用两角和与差的正切函数公式求得tanα的值,然后利用诱导公式得到tan(α-π)=tanα.
(2)将所求关系式转化为$\frac{tanα}{ta{n}^{2}α+1}$,再将tanα=2代入计算即可.

解答 解:(1)由$tan(α+\frac{π}{4})=-3$,得:
$\frac{tanα+1}{1-tanα}=-3$,
解得tanα=2,
所以tan(α-π)=tanα=2;
(2)$sinαcosα=\frac{sinαcosα}{{{{sin}^2}α+{{cos}^2}α}}=\frac{tanα}{{{{tan}^2}α+1}}=\frac{2}{5}$.

点评 本题考查两角和与差的三角函数,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.由三条直线x=0、x=2、y=0和曲线y=x3所围成的图形的面积为(  )
A.8B.$\frac{4}{3}$C.$\frac{18}{5}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列各组中的两个函数是同一函数的为(  )
A.y=($\sqrt{x}$)2与y=xB.y=$\sqrt{{x}^{2}}$与 y=($\sqrt{x}$)2C.y=$\root{3}{{x}^{3}}$与y=$\frac{{x}^{2}}{x}$D.y=($\root{3}{{x}^{3}}$)3与y=x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点($\frac{1}{2}$,2)在幂函数y=f(x)的图象上,点(-2,$\frac{1}{4}$)在幂函数y=g(x)的图象上,则f(2)+g(-1)=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四边形ABCD中,AB∥DC,AC与BD相交于点E,AE=$\frac{3}{5}$AC,∠ABD的角平分线交AC于点F.
(Ⅰ)求$\frac{CD}{AB}$的值;
(Ⅱ)若AF=$\frac{1}{2}$FC,求证:BD+DC=2AB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示,是函数y=Asin(ωx+φ)+k(A>0,ω>0,|φ|<$\frac{π}{2}$)的图象的一部分,则函数解析式是(  )
A.$y=2sin(2x+\frac{π}{6})+1$B.$y=sin(2x+\frac{π}{3})+1$C.$y=2sin(\frac{1}{2}x+\frac{π}{6})+2$D.$y=sin(2x+\frac{π}{3})+2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.有一无盖圆柱形容器,它的壁与底的厚度均为0.1cm,内高为20cm,内半径为4cm,求容器外壳体积的近似值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=log2(4x)•log2(2x),且x满足4-17x+4x2≤0,求f(x)的最值,并求出取得最值时,对应f(x)的 值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位得  到的数据:
赞同反对合计
50150200
30170200
合计80320400
(1)能否有97.5%的把握认为对这一问题的看法与性别有关?
(2)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述发言,求事件“选出的2人中,至少有一名女士”的概率.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,(n=a+b+c+d)
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案