精英家教网 > 高中数学 > 题目详情

(1)求证:4×6n+5n+1-9是20的倍数(n∈N);
(2)今天是星期一,再过3100天是星期几?

(1)见解析    (2) 星期五

解析(1)证明:4×6n+5n+1-9=4·(5+1)n+5·(4+1)n-9
=4(Cn05n+Cn15n-1+…+Cnn-15+1)+
5(Cn04n+Cn14n-1+…+Cnn-14+1)-9
=20[(Cn05n-1+Cn15n-2+…+Cnn-1)+(Cn04n-1+Cn14n-2+…+Cnn-1)],故结论成立.
(2)解:∵3100=950=(7+2)50=C500·750·20+C501·749·21+…+C5049·7·249+C5050·70·250=7Mn+250(Mn∈N),
又250=23×16+2=4×816=4(1+7)16=4(C160+7C161+72C162+…+716C1616)=4+7Nn(Nn∈N),
∴3100被7除余数是4,故再过3100天是星期五.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知(其中)的展开式中第项,第项,第项的二项式系数成等差数列.
(1)求的值;
(2)写出它展开式中的所有有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在的展开式中,第5项的系数与第3项的系数之比是
(1)求展开式中的所有有理项;
(2)求展开式中系数绝对值最大的项;
(3)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中当为偶数时,;当为奇数时,
(1)证明:当时,
(2)记,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4位参加辩论比赛的同学,比赛规则是:每位同学必须从甲、乙两道题中任选一题做答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0分,则这4位同学有多少种不同得分情况?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

由数字0,1,2,3,4,5可以组成:
(1)多少个没有重复数字的六位偶数;
(2)多少个没有重复数字的比102345大的自然数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某运输公司有7个车队.每个车队的车都多于4辆且型号相同,要从这7个车队中抽出10辆车组成一运输车队,每个车队至少抽1辆车,则不同抽法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知(1+x)na0a1(x-1)+a2(x-1)2+…+an(x-1)n(n∈N*).
(1)求a0Sna1a2a3+…+an
(2)试比较Sn与(n-2)2n+2n2的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的展开式中,求
(1)常数项;
(2)系数最大的项.

查看答案和解析>>

同步练习册答案