精英家教网 > 高中数学 > 题目详情
关于x的不等式ax+b>1(a,b∈R+)的解集为(1,+∞),那么
1
a
+
1
b
的取值范围是
 
考点:基本不等式
专题:不等式的解法及应用
分析:由于关于x的不等式ax+b>1(a,b∈R+)的解集为(1,+∞),可得x>
1-b
a
,且
1-b
a
=1
,再利用“乘1法”和基本不等式即可得出.
解答: 解:∵关于x的不等式ax+b>1(a,b∈R+)的解集为(1,+∞),
x>
1-b
a
,且
1-b
a
=1

化为a+b=1.
1
a
+
1
b
=(a+b)(
1
a
+
1
b
)
=2+
b
a
+
a
b
≥2+2
b
a
a
b
=4.当且仅当a=b=
1
2
时取等号.
1
a
+
1
b
的取值范围是[4,+∞).
故答案为:[4,+∞).
点评:本题考查了一元一次不等式的解法和“乘1法”和基本不等式,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某城市要建成宜商、宜居的国际化新城,该城市的东城区、西城区分别引进8个厂家,现对两个区域的16个厂家进行评估,综合得分情况如茎叶图所示.
(Ⅰ)根据茎叶图判断哪个区域厂家的平均分较高;
(Ⅱ)规定85分以上(含85分)为优秀厂家,若从该两个区域各选一个优秀厂家,求得分差距不超过5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆T:
x2
4
+
y2
3
=1
,A、B为椭圆T的左、右顶点,P为椭圆上异于A、B的任意一点,直线PA、PB交直线x=6于M、N两点,则线段MN的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有6个工厂组建一个公司,共需要10名技术人员,现分配给每个工厂至少一个名额,至多3个名额,那么这10个名额在这6个工厂的分配情况共有
 
种.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
-x2-x+2
的单调递增区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在(x+
1
x2
5的展开式中,含x2项的系数等于
 
.(结果用数值作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={-2,-1,0,1},集合B={x|x2-1≤0,x∈R},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设y=x4+ln3,则y′=(  )
A、4x3
B、4x3+
1
3
C、x4lnx
D、x4lnx+
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,0),
b
=(2,1).
(1)分别求
a
+
b
,2
a
-3
b
,|
b
|;
(2)当k为何值时,k
a
-
b
a
+3
b
平行,平行时它们是同向还是反向?

查看答案和解析>>

同步练习册答案