精英家教网 > 高中数学 > 题目详情
13.若x(1-2x)4=a1x+a2x2+a3x3+a4x4+a5x5,则a2+a3+a4+a5=0.

分析 x(1-2x)4=a1x+a2x2+a3x3+a4x4+a5x5,令x=1,可得:1=a1+a2+a3+a4+a5,另一方面:x(1-2x)4的一次项的系数为1.可得a1.即可得出.

解答 解:∵x(1-2x)4=a1x+a2x2+a3x3+a4x4+a5x5
令x=1,则1×(1-2)4=1=a1+a2+a3+a4+a5
另一方面:x(1-2x)4的一次项的系数为1×1=1.
∴a1=1.
则a2+a3+a4+a5=1-1=0.
故答案为:0.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.奇函数f(x)的定义域为(-5,5),若x∈[0,5)时,f(x)的图象如图所示,则不等式f(x)<0的解集为(-2,0)∪(2,5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.圆x2+y2-2x+2y=0的圆心到直线y=x+1的距离是$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.幂函数y=x-2的大致图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在三棱锥P-ABC中,底面ABC是等腰三角形,∠BAC=120°,BC=2,PA⊥平面ABC,若三棱锥P-ABC的外接球的表面积为8π,则该三棱锥的体积为(  )
A.$\frac{\sqrt{2}}{9}$B.$\frac{2\sqrt{2}}{9}$C.$\frac{\sqrt{2}}{3}$D.$\frac{4\sqrt{2}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,在正六边形ABCDEF中,|$\overrightarrow{AC}$|=2$\sqrt{3}$,则$\overrightarrow{AF}$•$\overrightarrow{FB}$等于(  )
A.-6B.6C.-2$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点为M,右焦点为F,过F的直线l与双曲线交于A,B两点,且满足:$\overrightarrow{MA}$$+\overrightarrow{MB}$=2$\overrightarrow{MF}$,$\overrightarrow{MA}•\overrightarrow{MB}$=0,则该双曲线的离心率是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的顶点为A1,A2,P为双曲线上一点,直线PA1交双曲线C的一条渐近线于M点,直线A2M和A2P的斜率分别为k1,k2,若A2M⊥PA1且k1+4k2=0,则双曲线C离心率为(  )
A.2B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.以双曲线$\frac{x^2}{9}-\frac{y^2}{16}$=1的焦点为顶点,顶点为焦点的椭圆方程是(  )
A.$\frac{x^2}{16}+\frac{y^2}{9}$=1B.$\frac{x^2}{25}+\frac{y^2}{16}$=1C.$\frac{x^2}{25}+\frac{y^2}{9}$=1D.$\frac{x^2}{16}+\frac{y^2}{25}$=1

查看答案和解析>>

同步练习册答案