精英家教网 > 高中数学 > 题目详情
5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点为M,右焦点为F,过F的直线l与双曲线交于A,B两点,且满足:$\overrightarrow{MA}$$+\overrightarrow{MB}$=2$\overrightarrow{MF}$,$\overrightarrow{MA}•\overrightarrow{MB}$=0,则该双曲线的离心率是2.

分析 由中点的向量表示形式可得F为AB的中点,$\overrightarrow{MA}•\overrightarrow{MB}$=0可得MA⊥MB,由△ABM为等腰直角三角形,可得tan45°=$\frac{AF}{MF}$,即有b2=a(c+a),由a,b,c的关系和离心率公式,计算即可得到所求值.

解答 解:由$\overrightarrow{MA}$$+\overrightarrow{MB}$=2$\overrightarrow{MF}$,$\overrightarrow{MA}•\overrightarrow{MB}$=0可得:
F为AB的中点,MA⊥MB,
由双曲线的对称性,可得AB⊥x轴,
令x=c,可得y=±b$\sqrt{\frac{{c}^{2}}{{a}^{2}}-1}$=±$\frac{{b}^{2}}{a}$,
由△ABM为等腰直角三角形,可得:
tan45°=$\frac{AF}{MF}$=$\frac{\frac{{b}^{2}}{a}}{c+a}$=1,
即有b2=a(c+a),
即(c-a)(c+a)=a(c+a),
可得c-a=a,即c=2a,
即有e=$\frac{c}{a}$=2.
故答案为:2.

点评 本题考查双曲线的离心率的求法,注意运用平面向量共线定理和向量垂直的条件,考查等腰三角形的性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设$\overrightarrow{x}$=(cosα,sinα),$\overrightarrow{y}$=(cosβ,sinβ)且β-α=$\frac{π}{3}$,则$\overrightarrow{x}$在$\overrightarrow{y}$方向上的投影为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$\overrightarrow m=({1,cosx}),\overrightarrow n=({t,\sqrt{3}sinx-cosx})$,函数$f(x)=\overrightarrow m•\overrightarrow n({t∈R})$的图象过点$M({\frac{π}{12},0})$.
(1)求t的值以及函数f(x)的最小正周期和单调增区间;
(2)在△ABC中,角A,B,C的对边分别是a,b,c.若$a=\frac{ccosB+bcosC}{2cosB}$,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若x(1-2x)4=a1x+a2x2+a3x3+a4x4+a5x5,则a2+a3+a4+a5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点分别为F1、F2,实轴的两个端点分别为A1、A2,虚轴的两个端点分别为B1、B2,若在线段B1F2上,存在两点M、N(点M、N异于B1、F2),使得∠A1MA2=∠A1NA2=90°,则双曲线离心率e的取值范围为$\sqrt{2}$<e<$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),F(c,0)是右焦点,圆x2+y2=c2与双曲线右支的一个交点是P,若直线FP与双曲线左支有交点,则双曲线离心率的取值范围是(  )
A.(2,+∞)B.($\sqrt{5}$,+∞)C.(1,2)D.(1,$\sqrt{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow m=({sin({x-\frac{π}{6}}),1}),\overrightarrow n=({cosx,1})$
(1)若$\overrightarrow m∥\overrightarrow n$,求tanx的值;
(2)若函数$f(x)=\overrightarrow m•\overrightarrow n,x∈[{0,π}]$,求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.有下列命题:
(1)$\sqrt{3}$$+\sqrt{7}$<2+$\sqrt{6}$;
(2)若a≥b>0,n∈N*,且n≥2,则有$\root{n}{a}$≥$\root{n}{b}$;
(3)1+3+5+…+(2n-1)=n2(n∈N*);
(4)nn+1>(n+1)n对-切n∈N*且n≥3恒成立.
以上命题适合使用数学归纳法证明的序号是(3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.3名教师和7名学生排成一排照相,则3名教师相邻的概率为$\frac{1}{15}$.

查看答案和解析>>

同步练习册答案