精英家教网 > 高中数学 > 题目详情
已知直线l:3x+4y-12=0,若圆上恰好存在两个点P、Q,它们到直线l的距离为1,则称该圆为“理想型”圆.则下列圆中是“理想型”圆的是(  )
A、x2+y2=1
B、x2+y2=16
C、(x-4)2+(y-4)2=1
D、(x-4)2+(y-4)2=16
考点:圆的标准方程
专题:直线与圆
分析:所找的圆的圆心到直线PQ的距离小于该圆的半径,由此能求出结果.
解答: 解:在一个圆上恰好存在两个点P、Q使得他们到直线L的距离为1
也就是说,直线PQ∥直线l,
也就是说,所找的圆的圆心到直线PQ的距离小于该圆的半径
因此设直线PQ为3x+4y+m=0
由两平行线间的距离公式可得m=-7或者-17
将两个m值分别代入直线PQ验证A、B、C、D中圆心到PQ的距离
只有D符合,
故选:D.
点评:本题考查圆的标准方程的求法,是中档题,解题时要认真审题,注意点到直线的距离公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某校共有师生2400人,现用分层抽样的方法从所有师生中抽取一个容量为120人的样本.已知从学生中抽取的人数为110人,则该校的教师人数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

4
1
2
+2-2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若U={1,2,3,4},M={1,2},N={2,3},则M∪N是(  )
A、{2}
B、{4}
C、{1,3,4}
D、{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

下列结论正确的是(  )
A、当x>0且x≠1时,lgx+
1
lgx
≥2
B、x≥2时,x+
1
x
的最小值为2
C、函数y=
x2+2
x2+1
最小值为2
D、当0<x≤2时,x-
1
x
无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

在1,2,3,…,9中任取2个数,有如下事件:
①恰有一个偶数和恰有一个奇数;
②至少有一个是奇数和两个数都是奇数;
③至少有一个是奇数和两个都是偶数;
④至少有一个是奇数和至少有一个是偶数.
其中互斥事件的个数是(  )
A、1B、2C、3D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆
x2
m2
+
y2
m2-1
=1(m>1)上一点P到其左、右焦点的距离分别为3和1,则m=(  )
A、6B、4C、3D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

方程
x2
2sinθ+6
+
y2
sinθ-2
=1所表示的曲线为(  )
A、焦点在x轴上的椭圆
B、焦点在y轴上的椭圆
C、焦点在x轴上的双曲线
D、焦点在y轴上的双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,半径为1的⊙O?平面α,PO⊥α,直线l?α,且l和⊙O相切,若PO=2
2
,则点P到l的距离(  )
A、
7
B、
5
C、3
D、不能确定

查看答案和解析>>

同步练习册答案