精英家教网 > 高中数学 > 题目详情
2.设f(x)=ex(ax2+x+1),且曲线y=f(x)在x=1处的切线与x轴平行.
(I)求a的值,并讨论f(x)的单调性;
(II)若θ∈[0,$\frac{π}{2}$],且|f(cosθ)-f(sinθ)|≤m恒成立,求m的取值范围.

分析 (Ⅰ)根据导函数的概念可得f'(1)=0,代入求出a,利用导函数的正负判断函数的单调性即可;
(Ⅱ)|f(cosθ)-f(sinθ)|≤m恒成立,只需求出左式的最大值即可,根据(1)式得出函数的单调性,求出函数的最大值,最小值进而得出|f(cosθ)-f(sinθ)|的最大值,求出m的取值范围.

解答 解:(Ⅰ)f′(x)=ex(ax2+x+1+2ax+1).由条件知,f′(1)=0,
∴a+3+2a=0,
∴a=-1.
∴f′(x)=ex(-x2-x+2)=-ex(x+2)(x-1).
故当x∈(-∞,-2)∪(1,+∞)时,f′(x)<0;
当x∈(-2,1)时,f′(x)>0.
∴f(x)在(-∞,-2),(1,+∞)单调减少,在(-2,1)单调增加;(6分)
(Ⅱ)由(Ⅰ)知f(x)在[0,1]单调增加,
故f(x)在[0,1]的最大值为f(1)=e,最小值为f(0)=1.
从而对任意x1,x2∈[0,1],有|f(x1)-f(x2)|≤e-1.(10分)
 而当$θ∈[0,\frac{π}{2}]$时,cosθ,sinθ∈[0,1].
从而|f(cosθ)-f(sinθ)|≤e-1,
所以m≥e-1…(12分)

点评 考查了导函数的概念,利用导函数判断函数的单调性,对恒成立问题的转化.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知x,y满足x2+y2-8x-4y-5=0,解答下列问题.
(1)求$\frac{y+1}{x+1}$的范围;
(2)求x2+y2+2x-2y+3的范围;
(3)已知圆内有一点M(3,2),过M点互相垂直的弦AC、BD,求AC+BD的最小值及四边形ABCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在四边形ABCD中,已知AD⊥DC,AB⊥BC,AB=1,AD=2,∠BAD=120°,则BD=$\sqrt{7}$,AC=$\frac{{2\sqrt{21}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=ax3+$\frac{b}{x}$+4,(a≠0,b≠0),则f(2)+f(-2)=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=[cos(x+$\frac{π}{4}$)+sin(x+$\frac{π}{4}$)][cos(x+$\frac{π}{4}$)-sin(x+$\frac{π}{4}$)]在一个周期内的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.袋子里装有6个球,其中红球1个,黄球2个,白球3个,规定每次摸球只能摸出一个球,且摸到红球得4分,摸到黄球得2分,摸到白球不得分.
(1)在每次摸出球,记下结果后就放回的情况下,求某人摸3次得分为4分的概率;
(2)在每次摸出球,记下结果后就不再放回的情况下,求某人摸3次得分的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x2+ax+b(a,b∈R)的值域为[0,+∞),若关于x的不等式f(x)<c的解集为(m,m+4),则实数c的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若[x]表示不大于的最大整数,则使得[log21]+[log22]+…+[log2n]≥2008成立的正整数n的最小值是314.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知在△ABC中,角A,B,C的对边分别为a,b,c,asinC-$\sqrt{3}$ccosA=0.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,△ABC的面积为$\sqrt{3}$,求b,c.

查看答案和解析>>

同步练习册答案