分析 复数z满足条件|z+i|+|z-i|=2,而A(0,1),B(0,-1),线段|AB|=2.可得:复数z表示的点在线段AB上.于是当z=i时,|z+i-1|取得最大值.
解答 解:∵复数z满足条件|z+i|+|z-i|=2,
∴|z+i|+|z-i|=2表示两点A(0,1),B(0,-1),线段|AB|=2,
则|z+i-1|是指线段上的点到点(1,-1)的距离,
∴|z+i-1|=|z-(1-i)|的最大值为$\sqrt{(-1-0)^{2}+(-1-1)^{2}}=\sqrt{5}$.
故答案为:$\sqrt{5}$.
点评 本题考查了复数的几何意义,考查了复数求模公式的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{2}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{\sqrt{10}}{10}$ | D. | $\frac{3\sqrt{10}}{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1011001(2) | B. | 1110101(2) | C. | 1010101(2) | D. | 1101001(2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{(2k-1)π}{4}$,0),k∈Z | B. | $(\frac{2k-1}{2},0),k∈Z$ | C. | ($\frac{2k-1}{4}$,0),k∈Z | D. | ($\frac{(2k-1)π}{2}$,0),k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 4 | C. | 2$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com