精英家教网 > 高中数学 > 题目详情
4.若函数f(x)=2x-1,则f(3)=5.

分析 利用函数性质求解.

解答 解:∵函数f(x)=2x-1,
∴f(3)=2×3-1=5.
故答案为:5.

点评 本题考查函数值的求法,是中档题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知f(x)=(a+b-3)x+1,g(x)=ax,其中a,b∈[0,3],求两个函数在定义域内都为增函数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.空间直角坐标系中,点A(-2,1,3)关于点B(1,-1,2)的对称点C的坐标为(  )
A.(4,1,1)B.(-1,0,5)C.(4,-3,1)D.(-5,3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.计算:$\frac{cos2°}{sin47°}$+$\frac{cos88°}{sin133°}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,正四棱柱ABCD-A1B1C1D1中,AA1=2AB=4,点E在CC1上且C1E=3EC.
(Ⅰ)证明:A1C⊥平面BED;
(Ⅱ)求向量$\overrightarrow{{A_1}C}$和$\overrightarrow{D{C_1}}$所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设x∈{-1,1},y∈{-2,0,2},则以(x,y)为坐标的点落在不等式x+2y≥1所表示的平面区域内的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在正三棱柱ABC-A1B1C1中,已知AB=2,CC1=$\sqrt{2}$,则异面直线AB1和BC1所成角的余弦值为(  )
A.0B.$\frac{\sqrt{42}}{7}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,边长为2的正方形ABCD所在的平面与△CDE所在的平面交于CD,
且AE⊥平面CDE,AE=1.
(Ⅰ)求证:CD⊥平面ADE;
(Ⅱ)求BE与平面ABCD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.F为双曲线Г:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,若Г上存在一点P使得△OPF为等边三角形(O为坐标原点),则Г的离心率e为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}+1}{2}$C.$\sqrt{3}+1$D.2

查看答案和解析>>

同步练习册答案