分析 判断得出该几何体是三棱锥,求解其体积:$\frac{1}{3}×$S△CBD×AB,△BCD边BD的高为$\frac{BC•CD}{BD}$,再利用直角三角形求解面积即可.
解答 解:∵根据三视图得出:该几何体是三棱锥,AB=2,BC=3,DB=5,CD=4,
AB⊥面BCD,BC⊥CD,
∴其体积:$\frac{1}{3}×$S△CBD×AB=$\frac{1}{3}×\frac{1}{2}×3×4×2$=4,
△BCD边BD的高为$\frac{BC•CD}{BD}$=$\frac{3×4}{5}$=$\frac{12}{5}$
侧视图的面积:$\frac{1}{2}×\frac{12}{5}$×2=$\frac{12}{5}$![]()
故答案为;4,$\frac{12}{5}$
点评 本题考查了三棱锥的三视图的运用,仔细阅读数据判断恢复直观图,关键是利用好仔细平面的位置关系求解,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{π}$ | B. | 1-$\frac{2}{π}$ | C. | $\frac{1}{π}$ | D. | $\frac{2}{π}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[-\frac{{\sqrt{3}}}{2},1]$ | B. | $[-\frac{1}{2},\frac{{\sqrt{3}}}{2}]$ | C. | $[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$ | D. | $[-\frac{1}{2},1]$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com