分析 由an+1=$\frac{{a}_{n}}{{a}_{n}+3}$,得到$\frac{1}{{a}_{n+1}}$=$\frac{{a}_{n}+3}{{a}_{n}}$=$\frac{3}{{a}_{n}}$+1,数列{$\frac{1}{{a}_{n}}$+$\frac{1}{2}$}是以1为首项,以3为等比的等比数列,问题得以解决.
解答 解:∵an+1=$\frac{{a}_{n}}{{a}_{n}+3}$,
∴$\frac{1}{{a}_{n+1}}$=$\frac{{a}_{n}+3}{{a}_{n}}$=$\frac{3}{{a}_{n}}$+1,
∴$\frac{1}{{a}_{n+1}}$+$\frac{1}{2}$=3($\frac{1}{{a}_{n}}$+$\frac{1}{2}$),
∵a1=2,
∴$\frac{1}{{a}_{1}}$+$\frac{1}{2}$=$\frac{1}{2}$+$\frac{1}{2}$=1,
∴数列{$\frac{1}{{a}_{n}}$+$\frac{1}{2}$}是以1为首项,以3为等比的等比数列,
∴$\frac{1}{{a}_{n}}$+$\frac{1}{2}$=3n-1,
∴an=$\frac{2}{2•{3}^{n-1}-1}$
点评 本题考查数列递推式,确定数列的通项是关键,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,0,0) | B. | (5,0,0) | C. | (1,0,0) | D. | (5,0,0)和(1,0,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com