| A. | 3 | B. | $\frac{7}{4}$ | C. | $\frac{3}{5}$ | D. | $\frac{7}{5}$ |
分析 画出约束条件的可行域,利用目标函数的几何意义,求出最优解,然后求解目标函数的最小值.
解答 解:点(x,y)满足约束条件$\left\{\begin{array}{l}x-y+3≥0\\ 2x-y-1≤0\\ 3x+2y-6≥0\end{array}\right.$的可行域如图:![]()
$\frac{y}{x+1}$表示经过可行域内一点(x,y)与点P(-1,0)的直线的斜率,
由图形可知,P与可行域的A连线的斜率最小,
由$\left\{\begin{array}{l}{2x-y-1=0}\\{3x+2y-6=0}\end{array}\right.$解得A($\frac{8}{7}$,$\frac{9}{7}$)
$\frac{y}{x+1}$取最小值$\frac{\frac{9}{7}}{\frac{8}{7}+1}$=$\frac{3}{5}$,
故选:C.
点评 本题考查线性规划的应用,目标函数的几何意义是解题的关键,考查转化思想以及数形结合思想的应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 84,4.84 | B. | 84,1.6 | C. | 85,4 | D. | 85,1.6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | $\sqrt{5}$ | C. | $\sqrt{7}$ | D. | $\sqrt{19}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2} | B. | {-2,-1} | C. | {-1} | D. | {-2,-1,0} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com