精英家教网 > 高中数学 > 题目详情
2.已知扇形OAB的圆心角为$\frac{5}{7}π$,周长为5π+14,则扇形OAB的面积为$\frac{35π}{2}$.

分析 由扇形的圆心角,半径表示出弧长,利用扇形的周长即可求出半径的值,利用扇形的面积公式即可得解.

解答 解:设扇形的半径为 r,圆心角为$\frac{5}{7}π$,
∴弧长l=$\frac{5}{7}π$r,
∴此扇形的周长为5π+14,
∴$\frac{5}{7}π$r+2r=5π+14,
解得:r=7,
由扇形的面积公式得=$\frac{1}{2}$×$\frac{5}{7}π$×r2=$\frac{1}{2}$×$\frac{5}{7}π$×49=$\frac{35π}{2}$.
故答案为:$\frac{35π}{2}$.

点评 本题考查扇形的面积公式及扇形的弧长公式的应用,此题的关键在于求出扇形的半径.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.函数$y=sinx-\sqrt{3}cosx$的图象可由函数$y=\sqrt{3}sinx+cosx$的图象至少向右平移$\frac{π}{2}$个单位长度得到.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.6人排成一排,若甲,乙,丙顺序一定,有多少种不同的排法(  )
A.6B.24C.120D.144

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=cosxsin(x+\frac{π}{3})-\sqrt{3}{cos^2}x+\frac{{\sqrt{3}}}{4}$.
(1)求函数f(x)的单调增区间;
(2)设g(x)=2af(x)+b,若g(x)在[-$\frac{π}{4}$,$\frac{π}{4}}$]上的值域为[2,4],求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某设备的使用年数x与所支出的维修总费用y的统计数据如下表:
使用年数x(单位:米)23456
维修总费用y(单位:万元)1.54.55.56.57.5
根据上表可得回归直线方程为$\widehat{y}$=1.3x+$\widehat{a}$.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用10年.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线的顶点在原点,焦点是椭圆4x2+y2=1的一个焦点,则此抛物线的焦点到准线的距离是(  )
A.$2\sqrt{3}$B.$\sqrt{3}$C.$\frac{1}{2}\sqrt{3}$D.$\frac{1}{4}\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆的中心在原点,焦点为${F_1}(-2\sqrt{3},0),{F_2}(2\sqrt{3},0)$,且长轴长为8.
(Ⅰ)求椭圆的方程;
(Ⅱ)直线y=x+2与椭圆相交于A,B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知向量$\overrightarrow{OP}=(2,1)$,$\overrightarrow{OA}$=(1,7),$\overrightarrow{OB}=(5,1)$,设M是直线OP上任意一点(为坐标原点),则$\overrightarrow{MA}•\overrightarrow{MB}$的最小值为-8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.△ABC的内角,角A,B,C的对边分别为a,b,c,已知,a=$\sqrt{5},cosA=\frac{2}{3}$,c=2则b=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

同步练习册答案