精英家教网 > 高中数学 > 题目详情
16.在面积为1的△ABC内部随机选取一点P,则△PBC面积大于$\frac{1}{4}$的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{4}{9}$D.$\frac{9}{16}$

分析 在三角形ABC内部取一点P,要满足得到的三角形PBC的面积是原三角形面积的$\frac{1}{4}$,P点应位于图中DE上(其中DE∥BC并且AD:AB=3:4),然后用阴影部分的面积除以原三角形的面积即可得到答案

解答 解:记事件A={△PBC的面积大于$\frac{1}{4}$},基本事件是△ABC的面积,(如图)
事件A的几何度量为图中阴影部分的面积(DE∥BC并且AD:AB=3:4),
因为阴影部分的面积是整个三角形面积的($\frac{3}{4}$)2=$\frac{9}{16}$,
所以P(A)=$\frac{9}{16}$.
故选:D.

点评 本题考查了几何概型,解答此题的关键在于明确满足条件的P的位置,测度是面积比.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知$\frac{π}{2}$<θ<π,且sinθ=$\frac{{2\sqrt{2}}}{3}$,则tan$\frac{θ}{2}$=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.甲、乙、丙、丁四位同学站成一排照相留念,已知甲、乙相邻,则甲、丙相邻的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.小吴同学计划大学毕业后出国留学,其父母于2014年7月1日在银行存入a元钱,此后每年7月1日存入a元钱,若年利润为p且保持不变,并约定每年到期,存款的本息均自动转为新的一年的定期,在小吴同学2019年7月1日大学毕业时取出这五笔存款,则可以取出的钱(元)的总数为(  )
A.a(1+p)5B.a(1+p)6C.$\frac{a}{p}$[(1+p)5-(1+p)]D.$\frac{a}{p}$[(1+p)6-(1+p)]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知A、B、C三点共线,等差数列{an}满足$\overrightarrow{OA}={a}_{4}\overrightarrow{OB}+({a}_{7}+1)\overrightarrow{OC}$,a3-a11+a14=-1.
(Ⅰ)求数列{an}的通项an及前n项和Sn
(Ⅱ)设数列{bn}满足bn=|an|,试求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知a∈R,复数z=$\frac{a-i}{1-i}$是纯虚数(i数虚数单位),则a=(  )
A.$-\sqrt{2}$B.-1C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若函数f(x)=sin2ax-$\sqrt{3}sinax•cosax-\frac{1}{2}(a>0)$的图象与直线y=b相切,并且切点的横坐标依次成公差为$\frac{π}{2}$的等差数列.
(Ⅰ)求a、b的值;
(Ⅱ)求函数y=f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,已知曲线${C_1}:\left\{\begin{array}{l}x=6+2cosθ\\ y=2sinθ\end{array}\right.$(θ为参数),过点P(0,2)且斜率为k的直线与曲线C1相交于不同的两点A,B.
(Ⅰ)求k的取值范围;
(Ⅱ)是否存在常数k,使得向量$\overrightarrow{OA}+\overrightarrow{OB}$与$\overrightarrow{PQ}$共线?如果存在,求k值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知全集U=R,A={x|y=log2(2+x)},B=[4,+∞),$C=\left\{{x|y=\sqrt{1-x}}\right\}$.
①计算A∩(∁UB);
②计算A∩C.

查看答案和解析>>

同步练习册答案