8£®Èçͼ£¬ÒÑÖªÍÖÔ²$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÉ϶¥µãΪA£¬×óÓÒ¶¥µãΪB£¬C£¬ÓÒ½¹µãΪF£¬|AF|=3£¬ÇÒ¡÷ABCµÄÖܳ¤Îª14£®
£¨1£©ÇóÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©¹ýµãM£¨4£¬0£©µÄÖ±ÏßlÓëÍÖÔ²ÏཻÓÚ²»Í¬Á½µãP£¬Q£¬µãNÔÚÏß¶ÎPQÉÏ£¬Éè¦Ë=$\frac{|MP|}{|PN|}$=$\frac{|MQ|}{|QN|}$£¬ÊÔÅжϵãNÊÇ·ñÔÚÒ»Ìõ¶¨Ö±ÏßÉÏ£¬²¢ÇóʵÊý¦ËµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉØ­AFØ­2=b2+c2=a2£¬Ôòa=3£¬2£¨Ø­ACØ­+a£©=14£¬¼´¿ÉÇóµÃbµÄÖµ£¬Ôòc=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{2}$£¬ÀûÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½£¬¼´¿ÉÇóµÃÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©·½·¨Ò»£ºÓÉ$\frac{|MP|}{|PN|}$=$\frac{|MQ|}{|QN|}$£¬ÕûÀíµÃ2y1y2=y0£¨y1+y2£©£¬½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí£¬¼´¿ÉÇóµÃx0=$\frac{9}{4}$£¬¦Ë=$\frac{Ø­MPØ­}{Ø­PNØ­}$=$\frac{4-{x}_{1}}{{x}_{1}-{x}_{0}}$£¬ÀûÓÃ$\frac{9}{4}$£¼x1¡Ü3£¬¼´¿ÉÇóµÃʵÊý¦ËµÄȡֵ·¶Î§£»
·½·¨¶þ£ºÓÉ$\frac{|MP|}{|PN|}$=$\frac{|MQ|}{|QN|}$£¬ÕûÀíµÃ2y1y2=y0£¨y1+y2£©£¬½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí£¬ÀûÓÃÇó¸ù¹«Ê½£¬ÇóµÃx0=$\frac{9}{4}$£¬¦Ë=$\frac{56k}{42k\sqrt{1-{k}^{2}}}$=$\frac{4}{3\sqrt{1-{k}^{2}}}$¡Ý$\frac{4}{3}$£¬¼´¿ÉÇóµÃʵÊý¦ËµÄȡֵ·¶Î§£»
·½·¨Èý£ºÓÉÌâÒâ¿ÉÔÚ$\overrightarrow{MP}$=¦Ë$\overrightarrow{PN}$£¬$\overrightarrow{MQ}$=-¦Ë$\overrightarrow{QN}$£¬¸ù¾ÝÏòÁ¿µÄ×ø±êÔËË㣬ÇóµÃP£¬Q×ø±ê£¬´úÈëÍÖÔ²·½³Ì£¬ÕûÀíÇóµÃx0=$\frac{9}{4}$£¬Í¬·½·¨Ò»£¬¼´¿ÉÇóµÃ¼´¿ÉÇóµÃʵÊý¦ËµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉØ­AFØ­2=b2+c2=a2£¬Ôòa=3£¬--------------------------£¨1·Ö£©
¡÷ABCµÄÖܳ¤Îª2£¨Ø­ACØ­+a£©=14£¬¼´$\sqrt{{a}^{2}+{b}^{2}}$+a=7£¬µÃb2=7£¬
Ôòc=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{2}$£¬
ÍÖÔ²µÄÀëÐÄÂÊΪe=$\frac{c}{a}$=$\frac{\sqrt{2}}{3}$£»---------------------------------------------£¨4·Ö£©
£¨2£©·½·¨Ò»£ºÏÔȻֱÏßlµÄбÂÊ´æÔÚ£¬ÉèlµÄ·½³ÌΪy=k£¨x-4£©£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬N£¨x0£¬y0£©£¬
ÓÉ$\frac{|MP|}{|PN|}$=$\frac{|MQ|}{|QN|}$£¬µÃ$\frac{{y}_{1}}{{y}_{0}-{y}_{1}}$=$\frac{{y}_{2}}{{y}_{2}-{y}_{0}}$£¬»¯¼òµÃ2y1y2=y0£¨y1+y2£©¢Ù£¬-----£¨6·Ö£©
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-4£©}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{7}=1}\end{array}\right.$ÏûÈ¥x£¬µÃ£¨9k2+7£©y2+56ky+49k2=0£¬
µÃy1+y2=-$\frac{56k}{9{k}^{2}+7}$£¬y1y2=$\frac{49{k}^{2}}{9{k}^{2}+7}$£¬----------------------------------------------------£¨8·Ö£©
´úÈë¢ÙʽµÃy0=-$\frac{7}{4}$k£¬ÓÉy0=k£¨x0-4£©£¬µÃx0=$\frac{9}{4}$£¬
¦Ë=$\frac{Ø­MPØ­}{Ø­PNØ­}$=$\frac{4-{x}_{1}}{{x}_{1}-{x}_{0}}$=-1+$\frac{4-{x}_{0}}{{x}_{1}-{x}_{0}}$=-1+$\frac{\frac{7}{4}}{{x}_{1}-\frac{9}{4}}$£¬---------------------------------------£¨10·Ö£©
ÓÉ$\frac{9}{4}$£¼x1¡Ü3£¬µÃ0£¼x1-$\frac{9}{4}$¡Ü$\frac{3}{4}$£¬Ôò¦Ë¡Ý-1+$\frac{7}{3}$=$\frac{4}{3}$£¬
Òò´Ë£¬NÔÚÒ»ÌõÖ±Ïßx=$\frac{9}{4}$ÉÏ£¬ÊµÊý¦Ë¡Ê[$\frac{4}{3}$£¬+¡Þ£©£®------------------------------------------£¨12·Ö£©
¡¾·¨¶þ£ºÏÔȻֱÏßlµÄбÂÊ´æÔÚ£¬ÉèlµÄ·½³ÌΪy=k£¨x-4£©£¬²»·ÁÉèk£¾0£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬N£¨x0£¬y0£©£¬y2£¼y1£¬
ÓɦË=$\frac{|MP|}{|PN|}$=$\frac{|MQ|}{|QN|}$£¬µÃ¦Ë=$\frac{{y}_{1}}{{y}_{0}-{y}_{1}}$=$\frac{{y}_{2}}{{y}_{2}-{y}_{0}}$£¬»¯¼òµÃ2y1y2=y0£¨y1+y2£©¢Ù£¬£¨6·Ö£©
ÓÉy1=¦Ë£¨y0-y1£©£¬y2=¦Ë£¨y2-y0£©£¬µÃy1+y2=¦Ë£¨y2-y1£©£¬¢Ú£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-4£©}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{7}=1}\end{array}\right.$ÏûÈ¥x£¬µÃ£¨9k2+7£©y2+56ky+49k2=0£¬
¿ÉÖª¡÷=£¨56k£©2-4¡Á£¨9k2+7£©¡Á49k2=49k2-36£¨1-k2£©£¾0£¬
µÃy1+y2=-$\frac{56k}{9{k}^{2}+7}$£¬y1y2=$\frac{49{k}^{2}}{9{k}^{2}+7}$£¬y1£¬2=$\frac{-56k¡À\sqrt{¡÷}}{2£¨9{k}^{2}+7£©}$£¬----------------------£¨8·Ö£©
´úÈë¢ÙʽµÃy0=-$\frac{7}{4}$k£¬ÓÉy0=k£¨x0-4£©£¬µÃx0=$\frac{9}{4}$£¬---------------------------------------£¨9·Ö£©
ÓÉ¢ÚʽµÃ-$\frac{56k}{9{k}^{2}+7}$=¦Ë•$\frac{-\sqrt{¡÷}}{9{k}^{2}+7}$£¬µÃ¦Ë=$\frac{56k}{42k\sqrt{1-{k}^{2}}}$=$\frac{4}{3\sqrt{1-{k}^{2}}}$¡Ý$\frac{4}{3}$£¬
Òò´Ë£¬NÔÚÒ»ÌõÖ±Ïßx=$\frac{9}{4}$ÉÏ£¬ÊµÊý¦Ë¡Ê[$\frac{4}{3}$£¬+¡Þ£©£®------------------------------------------£¨12·Ö£©
¡¾·¨Èý£ºÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬N£¨x0£¬y0£©£¬x2£¼x1£¬ÓɦË=$\frac{|MP|}{|PN|}$=$\frac{|MQ|}{|QN|}$£¬
µÃ$\overrightarrow{MP}$=¦Ë$\overrightarrow{PN}$£¬$\overrightarrow{MQ}$=-¦Ë$\overrightarrow{QN}$£¬-----------------------------------------------------------------------£¨5·Ö£©
¡à$\left\{\begin{array}{l}{{x}_{1}=\frac{4+¦Ë{x}_{0}}{1+¦Ë}}\\{{y}_{1}=\frac{¦Ë{y}_{0}}{1+¦Ë}}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=\frac{4-¦Ë{x}_{0}}{1-¦Ë}}\\{{y}_{2}=\frac{-¦Ë{y}_{0}}{1-¦Ë}}\end{array}\right.$½«P£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬´úÈëÍÖÔ²·½³ÌµÃ------------------£¨7·Ö£©
$\left\{\begin{array}{l}{\frac{£¨\frac{4+¦Ë{x}_{0}}{1+¦Ë}£©^{2}}{9}+\frac{£¨\frac{¦Ë{y}_{0}}{1+¦Ë}£©^{2}}{7}=1}\\{\frac{£¨\frac{4-¦Ë{x}_{0}}{1-¦Ë}£©^{2}}{9}+\frac{£¨{\frac{-¦Ë{y}_{0}}{1-¦Ë}£©}^{2}}{7}=1}\end{array}\right.$£¬-----------------£¨9·Ö£©
ÉÏÃæÁ½Ê½Ïà¼õ»¯¼òµÃx0=$\frac{9}{4}$£¬
¦Ë=$\frac{Ø­MPØ­}{Ø­PNØ­}$=$\frac{4-{x}_{1}}{{x}_{1}-{x}_{0}}$=-1+$\frac{4-{x}_{0}}{{x}_{1}-{x}_{0}}$=-1+$\frac{\frac{7}{4}}{{x}_{1}-\frac{9}{4}}$£¬---------------------------------------£¨10·Ö£©
ÓÉ$\frac{9}{4}$£¼x1¡Ü3£¬µÃ0£¼x1-$\frac{9}{4}$¡Ü$\frac{3}{4}$£¬Ôò¦Ë¡Ý-1+$\frac{7}{3}$=$\frac{4}{3}$£¬
Òò´Ë£¬NÔÚÒ»ÌõÖ±Ïßx=$\frac{9}{4}$ÉÏ£¬ÊµÊý¦Ë¡Ê[$\frac{4}{3}$£¬+¡Þ£©£®----------------------------------£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏòÁ¿µÄ×ø±êÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®¸ù¾ÝÏÂÁÐÌõ¼þÇóÅ×ÎïÏß·½³Ì£º
£¨1£©¶¥µãÔÚÔ­µã£¬½¹µãΪF£¨0£¬$\frac{1}{4}$£©µÄÅ×ÎïÏߵıê×¼·½³Ì£»
£¨2£©¶¥µãÔÚÔ­µã£¬×¼Ïß·½³ÌΪx=3µÄÅ×ÎïÏß·½³Ì£»
£¨3£©¶¥µãÔÚÔ­µã£¬¶Ô³ÆÖáÎª×ø±êÖᣬ½¹µãÔÚÖ±Ïßy=2x-4ÉϵÄÅ×ÎïÏß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÈôÕýÕûÊýN³ýÒÔÕýÕûÊýmºóµÄÓàÊýΪn£¬Ôò¼ÇΪN=n£¨mod m£©£¬ÀýÈç10=2£¨mod 4£©£¬ÏÂÃæ³ÌÐò¿òͼµÄËã·¨Ô´ÓÚÎÒ¹ú¹Å´úÎÅÃûÖÐÍâµÄ¡¶ÖйúÊ£ÓඨÀí¡·£®Ö´ÐиóÌÐò¿òͼ£¬ÔòÊä³öµÄiµÈÓÚ£¨¡¡¡¡£©
A£®4B£®8C£®16D£®32

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=£¨mx-1£©ex-x2£®
£¨1£©ÈôÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏßбÂÊΪe-2£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èô¹ØÓÚxµÄ²»µÈʽf£¨x£©£¼-x2+mx-mÓÐÇÒ½öÓÐÁ½¸öÕûÊý½â£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬ÔÚ¼¸ºÎÌåABCDEFÖУ¬ËıßÐÎABCDÊÇÁâÐΣ¬BE¡ÍÆ½ÃæABCD£¬DF¡ÎBE£¬ÇÒDF=2BE=2£¬EF=3£®
£¨1£©Ö¤Ã÷£ºÆ½ÃæACF¡ÍÆ½ÃæBEFD
£¨2£©Èô¶þÃæ½ÇA-EF-CÊǶþÃæ½Ç£¬ÇóÖ±ÏßAEÓëÆ½ÃæABCDËù³É½ÇµÄÕýÇÐÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªÃüÌâP£º´æÔÚx¡ÊR£¬mx2+1¡Ü1£¬q¶ÔÈÎÒâx¡ÊR£¬x2+mx+1¡Ý0£¬Èôp¡Å£¨©Vq£©Îª¼ÙÃüÌ⣬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬0£©¡È£¨2£¬+¡Þ£©B£®£¨0£¬2]C£®[0£¬2]D£®¦µ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®º¯Êý$f£¨x£©=£¨sinx+\sqrt{3}cosx£©£¨cosx-\sqrt{3}sinx£©$µÄ×îСÕýÖÜÆÚÊÇ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{2}$B£®¦ÐC£®$\frac{3¦Ð}{2}$D£®2¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Éètan¦Á=3£¬Ôò$\frac{sin£¨¦Á-¦Ð£©+cos£¨¦Ð-¦Á£©}{sin£¨\frac{¦Ð}{2}-¦Á£©+cos£¨\frac{¦Ð}{2}+¦Á£©}$=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Á¬ÐøÖÀÁ½´Î÷»×Ó£¬ÒÔÏȺóµÃµ½µÄµãÊým£¬nΪµãPµÄ×ø±ê£¨m£¬n£©£¬ÄÇôµãPÔÚÔ²x2+y2=17ÄÚ²¿£¨²»°üÀ¨±ß½ç£©µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{4}$B£®$\frac{1}{6}$C£®$\frac{5}{18}$D£®$\frac{2}{9}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸