·ÖÎö £¨1£©ÓÉØAFØ2=b2+c2=a2£¬Ôòa=3£¬2£¨ØACØ+a£©=14£¬¼´¿ÉÇóµÃbµÄÖµ£¬Ôòc=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{2}$£¬ÀûÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½£¬¼´¿ÉÇóµÃÍÖÔ²µÄÀëÐÄÂÊ£»
£¨2£©·½·¨Ò»£ºÓÉ$\frac{|MP|}{|PN|}$=$\frac{|MQ|}{|QN|}$£¬ÕûÀíµÃ2y1y2=y0£¨y1+y2£©£¬½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí£¬¼´¿ÉÇóµÃx0=$\frac{9}{4}$£¬¦Ë=$\frac{ØMPØ}{ØPNØ}$=$\frac{4-{x}_{1}}{{x}_{1}-{x}_{0}}$£¬ÀûÓÃ$\frac{9}{4}$£¼x1¡Ü3£¬¼´¿ÉÇóµÃʵÊý¦ËµÄȡֵ·¶Î§£»
·½·¨¶þ£ºÓÉ$\frac{|MP|}{|PN|}$=$\frac{|MQ|}{|QN|}$£¬ÕûÀíµÃ2y1y2=y0£¨y1+y2£©£¬½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí£¬ÀûÓÃÇó¸ù¹«Ê½£¬ÇóµÃx0=$\frac{9}{4}$£¬¦Ë=$\frac{56k}{42k\sqrt{1-{k}^{2}}}$=$\frac{4}{3\sqrt{1-{k}^{2}}}$¡Ý$\frac{4}{3}$£¬¼´¿ÉÇóµÃʵÊý¦ËµÄȡֵ·¶Î§£»
·½·¨Èý£ºÓÉÌâÒâ¿ÉÔÚ$\overrightarrow{MP}$=¦Ë$\overrightarrow{PN}$£¬$\overrightarrow{MQ}$=-¦Ë$\overrightarrow{QN}$£¬¸ù¾ÝÏòÁ¿µÄ×ø±êÔËË㣬ÇóµÃP£¬Q×ø±ê£¬´úÈëÍÖÔ²·½³Ì£¬ÕûÀíÇóµÃx0=$\frac{9}{4}$£¬Í¬·½·¨Ò»£¬¼´¿ÉÇóµÃ¼´¿ÉÇóµÃʵÊý¦ËµÄȡֵ·¶Î§£®
½â´ð ½â£º£¨1£©ÓÉØAFØ2=b2+c2=a2£¬Ôòa=3£¬--------------------------£¨1·Ö£©
¡÷ABCµÄÖܳ¤Îª2£¨ØACØ+a£©=14£¬¼´$\sqrt{{a}^{2}+{b}^{2}}$+a=7£¬µÃb2=7£¬
Ôòc=$\sqrt{{a}^{2}-{b}^{2}}$=$\sqrt{2}$£¬
ÍÖÔ²µÄÀëÐÄÂÊΪe=$\frac{c}{a}$=$\frac{\sqrt{2}}{3}$£»---------------------------------------------£¨4·Ö£©
£¨2£©·½·¨Ò»£ºÏÔȻֱÏßlµÄбÂÊ´æÔÚ£¬ÉèlµÄ·½³ÌΪy=k£¨x-4£©£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬N£¨x0£¬y0£©£¬
ÓÉ$\frac{|MP|}{|PN|}$=$\frac{|MQ|}{|QN|}$£¬µÃ$\frac{{y}_{1}}{{y}_{0}-{y}_{1}}$=$\frac{{y}_{2}}{{y}_{2}-{y}_{0}}$£¬»¯¼òµÃ2y1y2=y0£¨y1+y2£©¢Ù£¬-----£¨6·Ö£©
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-4£©}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{7}=1}\end{array}\right.$ÏûÈ¥x£¬µÃ£¨9k2+7£©y2+56ky+49k2=0£¬
µÃy1+y2=-$\frac{56k}{9{k}^{2}+7}$£¬y1y2=$\frac{49{k}^{2}}{9{k}^{2}+7}$£¬----------------------------------------------------£¨8·Ö£©
´úÈë¢ÙʽµÃy0=-$\frac{7}{4}$k£¬ÓÉy0=k£¨x0-4£©£¬µÃx0=$\frac{9}{4}$£¬
¦Ë=$\frac{ØMPØ}{ØPNØ}$=$\frac{4-{x}_{1}}{{x}_{1}-{x}_{0}}$=-1+$\frac{4-{x}_{0}}{{x}_{1}-{x}_{0}}$=-1+$\frac{\frac{7}{4}}{{x}_{1}-\frac{9}{4}}$£¬---------------------------------------£¨10·Ö£©
ÓÉ$\frac{9}{4}$£¼x1¡Ü3£¬µÃ0£¼x1-$\frac{9}{4}$¡Ü$\frac{3}{4}$£¬Ôò¦Ë¡Ý-1+$\frac{7}{3}$=$\frac{4}{3}$£¬
Òò´Ë£¬NÔÚÒ»ÌõÖ±Ïßx=$\frac{9}{4}$ÉÏ£¬ÊµÊý¦Ë¡Ê[$\frac{4}{3}$£¬+¡Þ£©£®------------------------------------------£¨12·Ö£©
¡¾·¨¶þ£ºÏÔȻֱÏßlµÄбÂÊ´æÔÚ£¬ÉèlµÄ·½³ÌΪy=k£¨x-4£©£¬²»·ÁÉèk£¾0£¬
ÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬N£¨x0£¬y0£©£¬y2£¼y1£¬
ÓɦË=$\frac{|MP|}{|PN|}$=$\frac{|MQ|}{|QN|}$£¬µÃ¦Ë=$\frac{{y}_{1}}{{y}_{0}-{y}_{1}}$=$\frac{{y}_{2}}{{y}_{2}-{y}_{0}}$£¬»¯¼òµÃ2y1y2=y0£¨y1+y2£©¢Ù£¬£¨6·Ö£©
ÓÉy1=¦Ë£¨y0-y1£©£¬y2=¦Ë£¨y2-y0£©£¬µÃy1+y2=¦Ë£¨y2-y1£©£¬¢Ú£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-4£©}\\{\frac{{x}^{2}}{9}+\frac{{y}^{2}}{7}=1}\end{array}\right.$ÏûÈ¥x£¬µÃ£¨9k2+7£©y2+56ky+49k2=0£¬
¿ÉÖª¡÷=£¨56k£©2-4¡Á£¨9k2+7£©¡Á49k2=49k2-36£¨1-k2£©£¾0£¬
µÃy1+y2=-$\frac{56k}{9{k}^{2}+7}$£¬y1y2=$\frac{49{k}^{2}}{9{k}^{2}+7}$£¬y1£¬2=$\frac{-56k¡À\sqrt{¡÷}}{2£¨9{k}^{2}+7£©}$£¬----------------------£¨8·Ö£©
´úÈë¢ÙʽµÃy0=-$\frac{7}{4}$k£¬ÓÉy0=k£¨x0-4£©£¬µÃx0=$\frac{9}{4}$£¬---------------------------------------£¨9·Ö£©
ÓÉ¢ÚʽµÃ-$\frac{56k}{9{k}^{2}+7}$=¦Ë•$\frac{-\sqrt{¡÷}}{9{k}^{2}+7}$£¬µÃ¦Ë=$\frac{56k}{42k\sqrt{1-{k}^{2}}}$=$\frac{4}{3\sqrt{1-{k}^{2}}}$¡Ý$\frac{4}{3}$£¬
Òò´Ë£¬NÔÚÒ»ÌõÖ±Ïßx=$\frac{9}{4}$ÉÏ£¬ÊµÊý¦Ë¡Ê[$\frac{4}{3}$£¬+¡Þ£©£®------------------------------------------£¨12·Ö£©
¡¾·¨Èý£ºÉèP£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬N£¨x0£¬y0£©£¬x2£¼x1£¬ÓɦË=$\frac{|MP|}{|PN|}$=$\frac{|MQ|}{|QN|}$£¬
µÃ$\overrightarrow{MP}$=¦Ë$\overrightarrow{PN}$£¬$\overrightarrow{MQ}$=-¦Ë$\overrightarrow{QN}$£¬-----------------------------------------------------------------------£¨5·Ö£©
¡à$\left\{\begin{array}{l}{{x}_{1}=\frac{4+¦Ë{x}_{0}}{1+¦Ë}}\\{{y}_{1}=\frac{¦Ë{y}_{0}}{1+¦Ë}}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=\frac{4-¦Ë{x}_{0}}{1-¦Ë}}\\{{y}_{2}=\frac{-¦Ë{y}_{0}}{1-¦Ë}}\end{array}\right.$½«P£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬´úÈëÍÖÔ²·½³ÌµÃ------------------£¨7·Ö£©
$\left\{\begin{array}{l}{\frac{£¨\frac{4+¦Ë{x}_{0}}{1+¦Ë}£©^{2}}{9}+\frac{£¨\frac{¦Ë{y}_{0}}{1+¦Ë}£©^{2}}{7}=1}\\{\frac{£¨\frac{4-¦Ë{x}_{0}}{1-¦Ë}£©^{2}}{9}+\frac{£¨{\frac{-¦Ë{y}_{0}}{1-¦Ë}£©}^{2}}{7}=1}\end{array}\right.$£¬-----------------£¨9·Ö£©
ÉÏÃæÁ½Ê½Ïà¼õ»¯¼òµÃx0=$\frac{9}{4}$£¬
¦Ë=$\frac{ØMPØ}{ØPNØ}$=$\frac{4-{x}_{1}}{{x}_{1}-{x}_{0}}$=-1+$\frac{4-{x}_{0}}{{x}_{1}-{x}_{0}}$=-1+$\frac{\frac{7}{4}}{{x}_{1}-\frac{9}{4}}$£¬---------------------------------------£¨10·Ö£©
ÓÉ$\frac{9}{4}$£¼x1¡Ü3£¬µÃ0£¼x1-$\frac{9}{4}$¡Ü$\frac{3}{4}$£¬Ôò¦Ë¡Ý-1+$\frac{7}{3}$=$\frac{4}{3}$£¬
Òò´Ë£¬NÔÚÒ»ÌõÖ±Ïßx=$\frac{9}{4}$ÉÏ£¬ÊµÊý¦Ë¡Ê[$\frac{4}{3}$£¬+¡Þ£©£®----------------------------------£¨12·Ö£©![]()
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬ÏòÁ¿µÄ×ø±êÔËË㣬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4 | B£® | 8 | C£® | 16 | D£® | 32 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬0£©¡È£¨2£¬+¡Þ£© | B£® | £¨0£¬2] | C£® | [0£¬2] | D£® | ¦µ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{¦Ð}{2}$ | B£® | ¦Ð | C£® | $\frac{3¦Ð}{2}$ | D£® | 2¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{1}{4}$ | B£® | $\frac{1}{6}$ | C£® | $\frac{5}{18}$ | D£® | $\frac{2}{9}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com