精英家教网 > 高中数学 > 题目详情
17.设f(x)=x2-(t+1)x+t(t,x∈R).
(1)当t=3时,求不等式f(x)>0的解集;
(2)已知f(x)≥0对一切实数x成立,求t的值.

分析 (1)t=3时,不等式f(x)>0化为x2-4x+3>0,求出解集即可;
(2)根据题意,利用判别式△≤0,即可求出t的值.

解答 解:(1)当t=3时,不等式f(x)>0可化为
不等式x2-4x+3>0,
即(x-1)(x-3)>0,…(3分)
解得x<1或x>3,
所以不等式f(x)>0的解集是(-∞,1)∪(3,+∞);…(6分)
(2)不等式f(x)≥0对一切实数x成立,
则△=(t+1)2-4t≤0,…(10分)
整理得(t-1)2≤0,
解得t=1.…(14分)

点评 本题考查了不等式的解法与应用问题,也考查了利用判别式求一元二次不等式恒成立的问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为b,则函数y=ax2-2bx+1在(-∞,2]上为减函数的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设$θ∈[{\frac{π}{6},\frac{2π}{3}}]$,已知$\overrightarrow{O{P}_{1}}$=(sinθ,cosθ),$\overrightarrow{O{P}_{2}}$=(3-sinθ,-cosθ),则|$\overrightarrow{{P}_{1}{P}_{2}}$|的取值范围是(  )
A.[1,5]B.[$\sqrt{13-6\sqrt{3}}$,$\sqrt{7}$]C.[1,$\sqrt{7}$]D.[1,$\sqrt{13-6\sqrt{3}}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,输出的n的值为(  )
A.10B.11C.12D.13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.为了计算2×4×6×8×10的值,小明同学设计了一个正确的算法,流程图如图所示,只是判断框(菱形框)中的内容看不清了,那么判断框中的内容可以是I≤10或I<11或I≤11或I<12或I<10.5,等.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),有Cn+1m种取法.在这Cn+1m种取法中,可分两类:一类是取出的m个球全部为白球,有C10Cnm种取法;另一类是取出1个黑球、m-1个白球,有C11Cnm-1种取法,所以有式子:C10Cnm+C11Cnm-1=Cn+1m成立.根据上述思想方法化简下列式子:Cnm+Ck1•Cnm-1+Ck2•Cnm-2+…+Ckk-1•Cnm-k+1+Cnm-k=${C}_{n+k}^{m}$(1≤k<m≤n,k,m,n∈N).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若在定义域R上递增的一次函数f(x)满足f[f(x)]=4x+3,则f(x)=2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆C1:(x-2)2+(y-1)2=4与圆C2:x2+(y-2)2=9相交,则交点连成的直线的方程为x+2y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.写出($\root{3}{x}$-$\frac{1}{2\root{3}{x}}$)6的展开式的第3项,以及常数项.

查看答案和解析>>

同步练习册答案