精英家教网 > 高中数学 > 题目详情
在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且a2+b2-c2=ab.
(Ⅰ)求角C的大小;
(Ⅱ)若c=
7
,且△ABC的面积为
3
3
2
,求a+b的值.
考点:余弦定理
专题:解三角形
分析:(Ⅰ)在锐角△ABC中,由条件利用余弦定理求得cosC=
a2+b2-c2
2ab
=
1
2
,可得C的值.
(Ⅱ)由△ABC的面积为
3
3
2
,求得ab的值,再根据c=
7
,a2+b2-c2=ab,求得a2+b2=13,从而求得a+b的值
解答: 解:(Ⅰ)在锐角△ABC中,∵a2+b2-c2=ab,
cosC=
a2+b2-c2
2ab
=
1
2
,C=60°. 
(Ⅱ)由S△ABC=
1
2
absinC=
3
4
ab=
3
3
2
,得ab=6.
又由a2+b2-c2=ab,且c=
7
,得a2+b2=13. 
∴(a+b)2=a2+b2+2ab=25,
∴a+b=5.
点评:本题主要考查余弦定理的应用,根据三角函数的值求角,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
an+3
(n∈N*).
(1)求证:{
1
an
+
1
2
}为等比数列,并求{an}的通项公式an
(2)数列{bn}满足bn=(3n-1)•
n
2n
•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,BC边上的高AD=BC,角A,B,C所对的边分别是a,b,c,则
b
c
+
c
b
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-a(x+1)在x=ln2处的切线的斜率为1.(e为无理数,e=271828…)
(Ⅰ)求a的值及f(x)的最小值;
(Ⅱ)当x≥0时,f(x)≥mx2,求m的取值范围;
(Ⅲ)求证:
n
i=2
lni
i4
1
2e
(i,n∈N+).(参考数据:ln2≈0.6931)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1-3an-1=0(n∈N*
(Ⅰ)若存在一个常数λ,使得数列{an+λ}为等比数列,求出λ的值;
(Ⅱ)设a1=
1
2
,数列{an}的前n和为Sn,求满足Sn>1090的n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z1=1-i,z2=3-5i,则复平面上与z1,z2对应的点Z1与Z2的距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>1,b>0,若a+b=2,则
1
a-1
+
2
b
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:ax+2y+6=0,直线l2:x+(a-1)y+a2-1=0.当a
 
时,l1与l2相交;当a
 
时,l1⊥l2;当a
 
时,l1与l2重合;当a
 
时,l1∥l2

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线xcosθ-
3
y+2=0(θ∈R)的倾斜角为α,则角α的取值范围是
 

查看答案和解析>>

同步练习册答案