精英家教网 > 高中数学 > 题目详情
7.如图是一个算法的流程图,当输入a=10,b=2的时,输出的y值为3.

分析 当输入a=10,b=2时,运行程序,直到a<b,再进行对数运算,即可得出结论.

解答 解:由题意,a>b,则a=6,b=5,
满足a>b,则a=2,b=8,
满足a<b,则y=log28=3,
故答案为3.

点评 要判断程序的运行结果,我们要先根据已知判断程序的功能,构造出相应的数学模型,转化为一个数学问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设等差数列{an}的前n项和为Sn,已知a1+a2+a3=a4+a5,S5=60,则a10=(  )
A.16B.20C.24D.26

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知全集U={2,3,x2+2x-3},集合A={2,|x+7|},且有∁UA={5},求满足条件的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为4,过焦点且垂直于x轴的弦长为2$\sqrt{2}$.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过椭圆E右焦点的直线l交椭圆于点M,N,设椭圆的左焦点为F,求$\overrightarrow{FM}$•$\overrightarrow{FN}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的方程为$ρsin({θ-\frac{2π}{3}})=-\sqrt{3}$,⊙C的极坐标方程为ρ=4cosθ+2sinθ.
(1)求直线l和⊙C的普通方程;
(2)若直线l与圆⊙C交于A,B两点,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数$f(x)=\left\{\begin{array}{l}{2^x}-x,x>1\\ 1,x≤1\end{array}\right.$,则不等式$f(x)<f({\frac{2}{x}})$的解集是(0,$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知x,y∈R,向量$\overrightarrow{a}$=$[\begin{array}{l}{1}\\{1}\end{array}]$使二阶矩阵A=$[\begin{array}{l}{a}&{2}\\{b}&{4}\end{array}]$的属于特征值3的一个特征向量,求直线l:2x-y-3=0在矩阵A对应的变换作用下得到的直线l′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的渐近线与抛物线$y=\frac{1}{2}{x^2}+2$相切,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某高校要了解在校学生的身体健康状况,随机抽取了50名学生进行心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组[50,55),第二组[55,60)…第五组[70,75],按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三组的频率之比为a:4:10.
(1)求a的值.
(2)若从第一、第五组两组数据中随机抽取两名学生的心率,求这两个心率之差的绝对值大于5的概率.

查看答案和解析>>

同步练习册答案