精英家教网 > 高中数学 > 题目详情
17.某高校要了解在校学生的身体健康状况,随机抽取了50名学生进行心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组[50,55),第二组[55,60)…第五组[70,75],按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三组的频率之比为a:4:10.
(1)求a的值.
(2)若从第一、第五组两组数据中随机抽取两名学生的心率,求这两个心率之差的绝对值大于5的概率.

分析 (1)求出各组的频数,即可求a的值.
(2)若从第一、第五组两组数据中随机抽取两名学生的心率,确定基本事件的个数,即可求这两个心率之差的绝对值大于5的概率.

解答 解:(1)因为第二组数据的频率为 0.032×5=0.16,故第二组的频数为0.16×50=8,
第一组的频数为2a,第三组的频数为20,第四组的频数为16,第五组的频数为4
所以 2a=50-20-16-8-4=2⇒a=1.…(6分)
(2)第一组的数据有2个,第五组的数据有4个,故总的基本事件有15个,
符合题意的基本事件有8个,
所以这两个心率之差的绝对值大于5的概率$P=\frac{8}{15}$.…(12分)

点评 本题考查频率分布直方图,考查概率的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图是一个算法的流程图,当输入a=10,b=2的时,输出的y值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+(2-4a)x+3a,x<0}\\{{log}_{a}(x+1),x≥0}\end{array}\right.(a>0,a≠1)$在R上单调递减,且方程|f(x)|=2有两个不相等的实数根,则实数a的取值范围是[$\frac{1}{2}$,$\frac{2}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知平面直角坐标系内的两个向量$\overrightarrow a=(m,3m-4)$,$\overrightarrow b=(1,2)$,且平面内的任一向量$\overrightarrow{c}$都可以唯一的表示成$\overrightarrow{c}$=$λ\overrightarrow{a}$+$μ\overrightarrow{b}$(λ,μ为实数),则m的取值范围是(  )
A.(-∞,4)B.(4,+∞)C.(-∞,4)∪(4,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.?x∈R,使得x2-mx+1≤0成立,则实数m的取值范围为m≥2或m≤-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,焦距为2,离心率e为$\frac{1}{2}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点$P({\frac{1}{2},1})$作圆$O:{x^2}+{y^2}=\frac{1}{2}$的切线,切点分别为M、N,直线MN与x轴交于点F,过点F的直线l交椭圆C于A、B两点,点F关于y轴的对称点为G,求△ABG的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}的前n项和为Sn,且λSn=λ-an,其中λ≠0且λ≠-1.
(1)证明:{an}是等比数列,并求其通项公式;
(2)若${S_4}=\frac{15}{16}$,求λ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一种在实数域和复数域上近似求解方程的方法可以设计如图所示的程序框图,若输入的n为6时,输出结果为2.45,则m可以是(  )
A.0.6B.0.1C.0.01D.0.05

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x-2|+|x+1|.
(Ⅰ)解不等式f(x)>5;
(Ⅱ)若f(x)≥(log2a)2-${log_{\sqrt{2}}}$a对任意实数x恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案