精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=|x-2|+|x+1|.
(Ⅰ)解不等式f(x)>5;
(Ⅱ)若f(x)≥(log2a)2-${log_{\sqrt{2}}}$a对任意实数x恒成立,求a的取值范围.

分析 (Ⅰ)去掉绝对值符号,然后求解不等式即可解不等式f(x)>5;
(Ⅱ)利用绝对值的几何意义,求出f(x)的最小值,利用恒成立,转化不等式求解即可.

解答 (本小题满分10分)
解:(Ⅰ)原不等式可化为:$\left\{\begin{array}{l}x≤-1\\ 1-2x>5\end{array}\right.$或$\left\{\begin{array}{l}-1<x≤2\\ 3>5\end{array}\right.$或$\left\{\begin{array}{l}x>2\\ 2x-1>5.\end{array}\right.$…(3分)
解得:x<-2或x>3,
所以解集为:(-∞,-2)∪(3,+∞).      …(5分)
(Ⅱ)因为|x-2|+|x+1|≥|x-2-(x+1)|=3,…(7分)
所以 f(x)≥3,当x≤-1时等号成立. 所以f(x)min=3.
又${({log_2}a)^2}-{log_{\sqrt{2}}}a≤3?{({log_2}a)^2}-2{log_2}a-3≤0?-1≤{log_2}a≤3$,
故$\frac{1}{2}≤a≤8$. …(10分)

点评 本题考查函数的恒成立,函数的最值的求法,绝对值不等式的几何意义的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.某高校要了解在校学生的身体健康状况,随机抽取了50名学生进行心率测试,心率全部介于50次/分到75次/分之间,现将数据分成五组,第一组[50,55),第二组[55,60)…第五组[70,75],按上述分组方法得到的频率分布直方图如图所示,已知图中从左到右的前三组的频率之比为a:4:10.
(1)求a的值.
(2)若从第一、第五组两组数据中随机抽取两名学生的心率,求这两个心率之差的绝对值大于5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆E过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=$\frac{1}{2}$,∠F1AF2的平分线所在直线为l.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设l与x轴的交点为Q,求点Q的坐标及直线l的方程;
(Ⅲ)在椭圆E上是否存在关于直线l对称的相异两点?若存在,请找出;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设x,y满足约束条件$\left\{\begin{array}{l}{2x+y-6≤0}\\{x-y-1≤0}\\{x-1≥0}\end{array}\right.$,若z=ax+2y仅在点($\frac{7}{3}$,$\frac{4}{3}$)处取得最大值,则a的值可以为(  )
A.-8B.-4C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知3b=4c,B=2C.
(Ⅰ)求sinB的值;
(Ⅱ)若b=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x<0}\\{m-{x}^{2},x≥0}\end{array}\right.$,给出下列两个命题:命题p:?m∈(-∞,0),方程f(x)=0有实数解;命题q:当m=$\frac{1}{4}$时,f(f(-1))=0,则下列命题为真命题的是(  )
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在高三一次数学测验后,某班对选做题的选题情况进行了统计,如表.
坐标系与参数方程不等式选讲
人数及均分人数均分 人数 均分
男同学14867
女同学86.5125.5
(Ⅰ)求全班选做题的均分;
(Ⅱ)据此判断是否有90%的把握认为选做《坐标系与参数方程》或《不等式选讲》与性别有关?
(Ⅲ)已知学习委员甲(女)和数学科代表乙(男)都选做《不等式选讲》.若在《不等式选讲》中按性别分层抽样抽取3人,记甲乙两人被选中的人数为,求的数学期望.
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,n=a+b+c+d.
下面临界值表仅供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.以下四个命题中,真命题是(  )
A.?x∈(0,π),sinx=tanx
B.“?x∈R,x2+x+1>0”的否定是“?x0∈R,x02+x0+1<0”
C.?θ∈R,函数f(x)=sin(2x+θ)都不是偶函数
D.条件p:$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,条件q:$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$则p是q的必要不充分条件

查看答案和解析>>

同步练习册答案