| 坐标系与参数方程 | 不等式选讲 | |||
| 人数及均分 | 人数 | 均分 | 人数 | 均分 |
| 男同学 | 14 | 8 | 6 | 7 |
| 女同学 | 8 | 6.5 | 12 | 5.5 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
分析 (Ⅰ)根据表中数据,计算全班选做题的平均分即可;
(Ⅱ)由表中数据计算观测值,对照临界值表得出结论;
(Ⅲ)计算学习委员甲被抽取的概率和数学科代表乙被抽取的概率,
从而得出甲乙两人均被选中的概率.
解答 解:(Ⅰ)根据表中数据,计算全班选做题的平均分为
$\overline{x}$=$\frac{1}{40}$×(14×8+8×6.5+6×7+12×5.5)=6.8.
(Ⅱ)由表中数据计算观测值:
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$=$\frac{40{×(14×12-8×6)}^{2}}{22×18×20×20}$=$\frac{40}{11}$≈3.636>2.706,
所以,据此统计有90%的把握认为
选做《坐标系与参数方程》或《不等式选讲》与性别有关.
(Ⅲ)学习委员甲被抽取的概率为$\frac{1}{12}$,
设《不等式选讲》中6名男同学编号为乙,1,2,3,4,5;
从中随机抽取2人,共有15种抽法:
乙与1,乙与2,乙与3,乙与4,乙与5,
1与2,1与3,1与4,1与5,2与3,
2与4,2与5,3与4,3与5,4与5,
数学科代表乙被抽取的有5种:
乙与1,乙与2,乙与3,乙与4,乙与5,
数学科代表乙被抽取的概率为$\frac{5}{15}$=$\frac{1}{3}$,
∴甲乙两人均被选中的概率为$\frac{1}{12}$×$\frac{1}{3}$=$\frac{1}{36}$.
点评 本题考查了对立性检验和列举法计算古典概型的概率问题,是基础题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,2) | B. | [-1,1] | C. | (0,1] | D. | (-∞,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{3}{4}$,0) | B. | (-∞,-$\frac{3}{4}$) | C. | (-3,-$\frac{3}{4}$) | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 等腰直角三角形 | B. | 等边三角形 | ||
| C. | 直角非等腰三角形 | D. | 等腰非直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com