分析 (1)利用已知条件求出数列的首项以及数列相邻两项的关系,利用数列是等比数列,求出公比,然后求解通项公式.
(2)利用数列的通项公式以及已知条件推出λ的关系式,求解即可.
解答 解:(1)当n=1时,λa1=λ-a1,
∵λ≠0且λ≠-1,∴${a_1}=\frac{λ}{1+λ}$,
当n≥2时,λSn-1=λ-an-1,λSn=λ-an,
两式相减得(1+λ)an=an-1,因为λ≠-1,
∴$\frac{a_n}{{{a_{n-1}}}}=\frac{1}{{({1+λ})}}$,
因此{an}是首项为${a_1}=\frac{λ}{1+λ}$,公比为$\frac{1}{{({1+λ})}}$的等比数列,
∴${a_n}=\frac{λ}{1+λ}{({\frac{λ}{1+λ}})^{n-1}}=\frac{λ}{{{{({1+λ})}^n}}}$.
(2)由λSn=λ-an得${S_4}=1-\frac{1}{λ}{a_4}$=$1-\frac{1}{{{{({λ+1})}^4}}}$
∴$1-\frac{1}{{{{({λ+1})}^4}}}=\frac{15}{16}$,
∴λ=1或λ=-3.
点评 本题考查数列的递推关系式的应用,等比数列的通项公式的求法,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 坐标系与参数方程 | 不等式选讲 | |||
| 人数及均分 | 人数 | 均分 | 人数 | 均分 |
| 男同学 | 14 | 8 | 6 | 7 |
| 女同学 | 8 | 6.5 | 12 | 5.5 |
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com