精英家教网 > 高中数学 > 题目详情
19.已知x,y∈R,向量$\overrightarrow{a}$=$[\begin{array}{l}{1}\\{1}\end{array}]$使二阶矩阵A=$[\begin{array}{l}{a}&{2}\\{b}&{4}\end{array}]$的属于特征值3的一个特征向量,求直线l:2x-y-3=0在矩阵A对应的变换作用下得到的直线l′的方程.

分析 利用特征值与特征向量的定义,建立方程,求出a,b,即可求矩阵A,设l上点P(x,y)在A的作用下得到直线l′上一点P′(x′,y′),进一步求得x′,y′与x,y的关系,代入直线方程得答案.

解答 解:由题意,$[\begin{array}{l}{a}&{2}\\{b}&{4}\end{array}]$$[\begin{array}{l}{1}\\{1}\end{array}]$=3$[\begin{array}{l}{1}\\{1}\end{array}]$,∴$\left\{\begin{array}{l}{a+2=3}\\{b+4=3}\end{array}\right.$,
∴a=1,b=-1,
∴A=$[\begin{array}{l}{1}&{2}\\{-1}&{4}\end{array}]$,
设l上点P(x,y)在A的作用下得到直线l′上一点P′(x′,y′),
则$\left\{\begin{array}{l}{x′=x+2y}\\{y′=-x+4y}\end{array}\right.$,∴x=$\frac{1}{3}$(2x′-y′),y=$\frac{1}{6}$(x′+y′),
代入直线l的方程,化简得7x′-5y′-18=0,
即直线l′的方程为7x-5y-18=0.

点评 本题主要考查矩阵与变换、曲线在矩阵变换下的曲线的方程,考查运算求解能力及化归与转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.用1,2,3,4组成无重复数字的三位数,这些数能被2整除的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a∈R,函数$f(x)=\frac{1}{{{2^x}-a}}$.
(1)当a=0时,解不等式f(x)>1;
(2)当a>0时,求函数y=2f(x)-f(2x)的零点个数;
(3)设a<0,若对于t∈R,函数在区间[t,t+1]上的最大值与最小值之差都不超过1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图是一个算法的流程图,当输入a=10,b=2的时,输出的y值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数$f(x)=\sqrt{3}sin2x-2{cos^2}x$.
(1)若$β∈[{0,\frac{π}{2}}]$,求f(β)的取值范围;
(2)若$tanα=2\sqrt{3}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={x|x2-2x-3<0},B={x||x-2|≤2},则A∩B=(  )
A.(-1,0]B.[0,3)C.(3,4]D.(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图所示矩形ABCD边长AB=1,AD=4,抛物线顶点为边AD的中点E,且B,C两点在抛物线上,则从矩形内任取一点落在抛物线与边BC围成的封闭区域(包含边界上的点)内的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+(2-4a)x+3a,x<0}\\{{log}_{a}(x+1),x≥0}\end{array}\right.(a>0,a≠1)$在R上单调递减,且方程|f(x)|=2有两个不相等的实数根,则实数a的取值范围是[$\frac{1}{2}$,$\frac{2}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设数列{an}的前n项和为Sn,且λSn=λ-an,其中λ≠0且λ≠-1.
(1)证明:{an}是等比数列,并求其通项公式;
(2)若${S_4}=\frac{15}{16}$,求λ.

查看答案和解析>>

同步练习册答案