分析 (1)利用二倍角和辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,结合三角函数的图象和性质,得到f(x)的取值范围.
(2)已知$tanα=2\sqrt{3}$,求解f(α)的表达式,构造正切.可得结论.
解答 解:函数$f(x)=\sqrt{3}sin2x-2{cos^2}x$.
化简可得:f(x)=$\sqrt{3}$sin2x-cos2x-1
=2sin(2x-$\frac{π}{6}$)-1
那么:f(β)=2sin(2β$-\frac{π}{6}$)-1
∵$β∈[{0,\frac{π}{2}}]$,
∴2β$-\frac{π}{6}$∈[$-\frac{π}{6},\frac{5π}{6}$],
∴sin(2β$-\frac{π}{6}$)∈[$-\frac{1}{2}$,1]
故得f(β)的取值范围是[-2,1]
(2)函数$f(x)=\sqrt{3}sin2x-2{cos^2}x$.
那么:f(α)=$\sqrt{3}$sin2α-2cos2α=$\frac{2\sqrt{3}sinαcosα-2co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}=\frac{2\sqrt{3}tanα-2}{ta{n}^{2}α+1}$
∵$tanα=2\sqrt{3}$,
∴f(α)=$\frac{2\sqrt{3}×2\sqrt{3}-2}{4×3+1}=\frac{10}{13}$.
点评 本题主要考查对三角函数的化简能力,函数性质和同角三角函数关系式的计算.属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $\frac{5}{4}$ | C. | $\frac{5}{3}$或$\frac{5}{4}$ | D. | $\frac{5}{3}$或$\frac{5}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A+B为a1,a2,…,aN的和 | |
| B. | A和B分别是a1,a2,…,aN中最大的数和最小的数 | |
| C. | $\frac{A+B}{2}$为a1,a2,…,aN的算术平均数 | |
| D. | A和B分别是a1,a2,…,aN中最小的数和最大的数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>c>b | B. | a>b>c | C. | c>a>b | D. | b>a>c |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com