4£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬É϶¥µãΪA£¬µã$P£¨{1£¬\frac{3}{2}}£©$ÔÚÍÖÔ²CÉÏ£¬¹ýµãAÓëAF2´¹Ö±µÄÖ±Ïß½»xÖḺ°ëÖáÓÚµãB£¬ÇÒ$2\overrightarrow{{F_1}{F_2}}+\overrightarrow{{F_2}B}=\overrightarrow 0$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚ¹ýµãQ£¨4£¬0£©µÄÖ±ÏßmÓëÍÖÔ²CÏཻÓÚ²»Í¬µÄÁ½µãM£¬N£¬Ê¹µÃ36|QP|2=35|QM|•|QN|£¿Èô´æÔÚ£¬Çó³öÖ±ÏßmµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Éè³öBµÄ×ø±ê£¬¸ù¾Ý$\overrightarrow{{F}_{2}A}$•$\overrightarrow{AB}$=0£¬ÒÔ¼°F1ΪF2BµÄÖе㣬Çó³öa=2c£¬µÃµ½¹ØÓÚa£¬b£¬cµÄ·½³Ì£¬Çó³öÍÖÔ²µÄ·½³Ì¼´¿É£»
£¨2£©ÉèÖ±ÏßmµÄ·¶Î§Îªy=k£¨x-4£©£¬ÁªÁ¢·½³Ì×éµÃµ½£¨3+4k2£©x2-32k2x+64k2-12=0£¬Çó³ökµÄ·¶Î§£¬ÉèM£¨x1£¬y1£©£¬N £¨x2£¬y2£©£¬µÃµ½¹ØÓÚkµÄ·½³Ì£¬½â³ö¼´¿É£®

½â´ð ½â£º£¨1£©ÉèB£¨x0£¬0£©£¬ÓÉF2£¨c£¬0£©£¬A£¨0£¬b£©£¬
µÃ$\overrightarrow{{F}_{2}A}$=£¨-c£¬b£©£¬$\overrightarrow{AB}$=£¨x0£¬-b£©£¬
¡ß$\overrightarrow{{F}_{2}A}$•$\overrightarrow{AB}$=0£¬¡à-cx0-b2=0£¬
¡àx0=-$\frac{{b}^{2}}{c}$£¬
¡ß2$\overrightarrow{{{F}_{1}F}_{2}}$+$\overrightarrow{{F}_{2}B}$=0£¬
¡àF1ΪF2BµÄÖе㣬
¡à-$\frac{{b}^{2}}{c}$+c=-2c£¬
¡àb2=3c2=a2-c2£¬
¡àa=2c£¬
ÓÉ$\left\{\begin{array}{l}{\frac{1}{{a}^{2}}+\frac{\frac{9}{4}}{{b}^{2}}=1}\\{a=2c}\\{{a}^{2}{=b}^{2}{+c}^{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{c}^{2}=1}\\{{b}^{2}=3}\\{{a}^{2}=4}\end{array}\right.$£¬
¡àÍÖÔ²µÄ·½³ÌÊÇ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1£»
£¨2£©ÓÉÌâÒâµÃÖ±ÏßmµÄбÂÊ´æÔÚ£¬
¡à¿ÉÉèÖ±ÏßmµÄ·¶Î§Îªy=k£¨x-4£©£¬
ÓÉ$\left\{\begin{array}{l}{y=k£¨x-4£©}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬ÏûÈ¥y£¬ÕûÀíµÃ£¨3+4k2£©x2-32k2x+64k2-12=0£¬
ÓÉ¡÷=£¨32k2£©2-4£¨3+4k2£©£¨64k2-12£©£¾0£¬
½âµÃ£º-$\frac{1}{2}$£¼k£¼$\frac{1}{2}$£¬
ÉèM£¨x1£¬y1£©£¬N £¨x2£¬y2£©£¬
Ôòx1+x2=$\frac{3{2k}^{2}}{3+{4k}^{2}}$£¬x1x2=$\frac{6{4k}^{2}-12}{3+{4k}^{2}}$£¬
¡ß|PQ|2=$\frac{45}{4}$£¬¡à|QM|•|QN|=$\frac{81}{7}$£¬
ÓÖ|QM|•|QN|=$\sqrt{{£¨4{-x}_{1}£©}^{2}{{+y}_{1}}^{2}}$¡Á$\sqrt{{£¨4{-x}_{2}£©}^{2}{{+y}_{2}}^{2}}$
=£¨k2+1£©[x1x2-4£¨x1+x2£©+16]=£¨k2+1£©•$\frac{36}{3+{4k}^{2}}$£¬
¡à£¨k2+1£©•$\frac{36}{3+{4k}^{2}}$=$\frac{81}{7}$£¬
½âµÃ£ºk=$\frac{\sqrt{2}}{4}$£¬¾­¼ìÑé³ÉÁ¢£¬
¡àÖ±Ïß·½³ÌÊÇy=¡À$\frac{\sqrt{2}}{4}$£¨x-4£©¼´$\sqrt{2}$x+4y-4$\sqrt{2}$=0»ò$\sqrt{2}$x-4y-4$\sqrt{2}$=0£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²·½³ÌµÄÇó½â£¬Ö±ÏßÓëÍÖԲλÖùØÏµµÄÎÊÌ⣬¿¼²é·ÖÎöÀí½âÓë¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¼×¡¢ÒÒ¡¢±ûÈýÃûͬѧ²Î¼Ó¸è³ª¡¢Î§Æå¡¢Î赸¡¢ÔĶÁ¡¢ÓÎÓ¾5¸ö¿ÎÍâ»î¶¯£¬Ã¿¸öͬѧ±Ë´Ë¶ÀÁ¢µØÑ¡Ôñ²Î¼Ó3¸ö»î¶¯£¬ÆäÖм×ͬѧϲ»¶³ª¸èµ«²»Ï²»¶ÏÂÆå£¬ËùÒÔ±ØÑ¡¸è³ª£¬²»Ñ¡Î§Æå£¬ÁíÔÚÎ赸¡¢ÔĶÁ¡¢ÓÎÓ¾ÖÐËæ»úÑ¡2¸ö£¬Í¬Ñ§ÒҺͱû´Ó5¸ö¿ÎÍâ»î¶¯ÖÐÈÎÑ¡3¸ö£®
£¨1£©Çó¼×ͬѧѡÖÐÎ赸ÇÒÒÒ¡¢±ûÁ½ÃûͬѧδѡÖÐÎ赸µÄ¸ÅÂÊ£»
£¨2£©ÉèX±íʾ²Î¼ÓÎ赸µÄͬѧÈËÊý£¬ÇóXµÄ·Ö²¼Áм°ÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{2x+y-6¡Ü0}\\{x-y-1¡Ü0}\\{x-1¡Ý0}\end{array}\right.$£¬Èôz=ax+2y½öÔڵ㣨$\frac{7}{3}$£¬$\frac{4}{3}$£©´¦È¡µÃ×î´óÖµ£¬ÔòaµÄÖµ¿ÉÒÔΪ£¨¡¡¡¡£©
A£®-8B£®-4C£®4D£®8

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{{2}^{x}£¬x£¼0}\\{m-{x}^{2}£¬x¡Ý0}\end{array}\right.$£¬¸ø³öÏÂÁÐÁ½¸öÃüÌ⣺ÃüÌâp£º?m¡Ê£¨-¡Þ£¬0£©£¬·½³Ìf£¨x£©=0ÓÐʵÊý½â£»ÃüÌâq£ºµ±m=$\frac{1}{4}$ʱ£¬f£¨f£¨-1£©£©=0£¬ÔòÏÂÁÐÃüÌâÎªÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®p¡ÄqB£®£¨©Vp£©¡ÄqC£®p¡Ä£¨©Vq£©D£®£¨©Vp£©¡Ä£¨©Vq£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔÚ¸ßÈýÒ»´ÎÊýѧ²âÑéºó£¬Ä³°à¶ÔÑ¡×öÌâµÄÑ¡ÌâÇé¿ö½øÐÐÁËͳ¼Æ£¬Èç±í£®
×ø±êϵÓë²ÎÊý·½³Ì²»µÈʽѡ½²
ÈËÊý¼°¾ù·ÖÈËÊý¾ù·Ö ÈËÊý ¾ù·Ö
ÄÐͬѧ14867
Ůͬѧ86.5125.5
£¨¢ñ£©ÇóÈ«°àÑ¡×öÌâµÄ¾ù·Ö£»
£¨¢ò£©¾Ý´ËÅжÏÊÇ·ñÓÐ90%µÄ°ÑÎÕÈÏΪѡ×ö¡¶×ø±êϵÓë²ÎÊý·½³Ì¡·»ò¡¶²»µÈʽѡ½²¡·ÓëÐÔ±ðÓйأ¿
£¨¢ó£©ÒÑ֪ѧϰίԱ¼×£¨Å®£©ºÍÊýѧ¿Æ´ú±íÒÒ£¨ÄУ©¶¼Ñ¡×ö¡¶²»µÈʽѡ½²¡·£®ÈôÔÚ¡¶²»µÈʽѡ½²¡·Öа´ÐÔ±ð·Ö²ã³éÑù³éÈ¡3ÈË£¬¼Ç¼×ÒÒÁ½È˱»Ñ¡ÖеÄÈËÊýΪ£¬ÇóµÄÊýѧÆÚÍû£®
²Î¿¼¹«Ê½£º${K^2}=\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{c+d}£©£¨{a+c}£©£¨{b+d}£©}}$£¬n=a+b+c+d£®
ÏÂÃæÁÙ½çÖµ±í½ö¹©²Î¿¼£º
P£¨K2¡Ýk0£©0.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÊµÊýx£¬yÂú×ã$\left\{\begin{array}{l}{x¡Ü4}\\{x+y-2¡Ý0}\\{x-y+8¡Ý0}\end{array}\right.$£¬Èôz=$\frac{1}{2}$ax+yµÄ×î´óֵΪ2a+12£¬×îСֵΪ2a-2£¬ÔòaµÄȡֵ·¶Î§ÊÇ[-2£¬2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÔÏÂËĸöÃüÌâÖУ¬ÕæÃüÌâÊÇ£¨¡¡¡¡£©
A£®?x¡Ê£¨0£¬¦Ð£©£¬sinx=tanx
B£®¡°?x¡ÊR£¬x2+x+1£¾0¡±µÄ·ñ¶¨ÊÇ¡°?x0¡ÊR£¬x02+x0+1£¼0¡±
C£®?¦È¡ÊR£¬º¯Êýf£¨x£©=sin£¨2x+¦È£©¶¼²»ÊÇżº¯Êý
D£®Ìõ¼þp£º$\left\{\begin{array}{l}{x+y£¾4}\\{xy£¾4}\end{array}\right.$£¬Ìõ¼þq£º$\left\{\begin{array}{l}{x£¾2}\\{y£¾2}\end{array}\right.$ÔòpÊÇqµÄ±ØÒª²»³ä·ÖÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=alnx+2a£¬g£¨x£©=x+$\frac{a}{x}$£¨ÆäÖÐaΪ³£Êý£¬a¡ÊR£©£®
£¨¢ñ£©Çóº¯Êýg£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©µ±a£¾0ʱ£¬ÊÇ·ñ´æÔÚʵÊýa£¬Ê¹µÃ¶ÔÓÚÈÎÒâx1¡¢x2¡Ê[1£¬e]ʱ£¬²»µÈʽf£¨x1£©-g£¨x2£©£¾0ºã³ÉÁ¢£¿Èç¹û´æÔÚ£¬ÇóaµÄȡֵ·¶Î§£»Èç¹û²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£¨ÆäÖÐeÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£¬e=2.71828¡­£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ë«ÇúÏßʵ°ëÖ᳤Ϊ2£¬½¹µãΪ£¨-3£¬0£©¡¢£¨3£¬0£©£¬Ôò¸ÃË«ÇúÏßΪ£¨¡¡¡¡£©
A£®$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1B£®$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{9}$=1C£®$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1D£®$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{5}$=1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸