精英家教网 > 高中数学 > 题目详情
设半径为3的圆C被直线l:x+y-4=0截得的弦AB的中点为P(3,1)且弦长|AB|=2
7
求圆C的方程.
考点:圆的标准方程
专题:计算题,直线与圆
分析:先求出弦心距,再根据圆C被直线l:x+y-4=0截得的弦AB的中点为P(3,1),建立方程,即可求得圆C的方程.
解答: 解:由题意设所求的圆的方程为:(x-a)2+(y-b)2=9. 
圆心到直线的距离为d=
9-7
=
2
=
|a+b-4|
2

∵圆C被直线l:x+y-4=0截得的弦AB的中点为P(3,1),
1-b
3-a
=1,
∴a=4,b=2或a=2,b=0
即所求的圆的方程为:(x-4)2+(y-2)2=9或(x-2)2+y2=9.
点评:本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,求圆的标准方程,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四个判断:
①在频率分布直方图中,众数左边和右边的直方图的面积相等;
②R2统计量是用来刻画回归效果的统计量,R2的值越大,说明回归模型拟合效果越好;
③废品率x%和每吨生铁的成本y元之间的回归直线方程是
y
=2x+256,这表明废品率每增加1%,生铁的成本平均每吨增加2元;
④“某彩票的中奖概率为
1
1000
”意味着买1000张这种彩票就一定能中奖.
其中,正确的个数是(  )
A、4B、3C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2sin(2x-
π
3
)的部分图象如图所示.
(Ⅰ)写出f(x)的最小正周期及图中x0,y0的值;
(Ⅱ)求f(x)在区间[-
π
4
π
6
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1
x
,x<0
(
1
3
)x,x≥0
,则不等式-
1
3
≤f(x)≤
1
3
的解集为(  )
A、[-1,2)∪[3,+∞)
B、(-∞,-3]∪[1,+∞)
C、[
3
2
,+∞)
D、(1,
3
]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

从1,2,3,4,5这五个数中,随机取出两个数字,剩下三个数字的和是奇数的概率是(  )
A、0.3B、0.4
C、0.5D、0.6

查看答案和解析>>

科目:高中数学 来源: 题型:

设x>0,则“a≥1”是“x+
a
x
≥2恒成立”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2
x
+
1
x
+1
(1)求函数f(x)在x=4处的切线方程(用一般式作答);
(2)令F(x)=2x
x
+(1-m)x+1,若关于x的不等式F(x)≤0有实数解.求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(m,4)是椭圆
x2
a2
+
y2
b2
=1(a>b>0)上的一点,F1,F2是椭圆的两个焦点,若△PF1F2的内切圆的半径为
3
2
,则此椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知异面直线a,b均与平面α相交,下列命题:
(1)存在直线m?α,使得m⊥a或m⊥b.
(2)存在直线m?α,使得m⊥a且m⊥b.
(3)存在直线m?α,使得m与a和b所成的角相等.
其中不正确的命题个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案