精英家教网 > 高中数学 > 题目详情
6.若集合A={-1,0,1,2},B={1,2,3},则A∩B=(  )
A.{-1,0,1,2,3}B.{-1,3}C.{1,2}D.{3}

分析 直接由交集的运算性质计算得答案.

解答 解:∵集合A={-1,0,1,2},B={1,2,3},
∴A∩B={-1,0,1,2}∩{1,2,3}={1,2}.
故选:C.

点评 本题考查了交集及其运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若${(1+3x)^{2017}}={a_0}+{a_1}x+{a_2}{x^2}+…+{a_{2017}}{x^{2017}}$,则$\frac{a_1}{3}-\frac{a_2}{3^2}+\frac{a_3}{3^3}+…+{(-1)^{n-1}}\frac{a_n}{3^n}+…+\frac{{{a_{2017}}}}{{{3^{2017}}}}$的值为(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$y=2tan(2x-\frac{π}{4})-1$在一个周期内的图象是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,且满足Sn=2an-n,求数列{an}的通项公式.勤于思考的小红设计了下面两种解题思路,请你选择其中一种并将其补充完整.
思路1:先设n的值为1,根据已知条件,计算出a1=1,a2=3,a3=7.
猜想:an=2n-1
然后用数学归纳法证明.证明过程如下:
①当n=1时,a1=21-1,猜想成立
②假设n=k(k∈N*)时,猜想成立,即ak=2k-1.
那么,当n=k+1时,由已知Sn=2an-n,得Sk+1=2ak+1-(k+1).
又Sk=2ak-k,两式相减并化简,得ak+1=2k+1-1(用含k的代数式表示).
所以,当n=k+1时,猜想也成立.
根据①和②,可知猜想对任何k∈N*都成立.
思路2:先设n的值为1,根据已知条件,计算出a1=1.
由已知Sn=2an-n,写出Sn+1与an+1的关系式:Sn+1=2an+1-(n+1),
两式相减,得an+1与an的递推关系式:an+1=2an+1.
整理:an+1+1=2(an+1).
发现:数列{an+1}是首项为2,公比为2的等比数列.
得出:数列{an+1}的通项公式an+1=2n,进而得到an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=e-x-$\frac{1}{1+x}$.
(Ⅰ)证明:当x∈[0,3]时,${e^{-x}}≥\frac{1}{1+9x}$.
(Ⅱ)证明:当x∈[2,3]时,$-\frac{2}{7}<f(x)<0$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.i是虚数单位,复数$\frac{1+3i}{1-i}$=-1+2i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=alnx-x+2,(其中实数a≠0).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)如果对任意的x1∈[1,e],总存在x2∈[1,e],使得f(x1)+f(x2)≥3,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=x2-|x|的值域是[$-\frac{1}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若x>3,则函数$f(x)=x+\frac{4}{x-3}$取得最小值为(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案