精英家教网 > 高中数学 > 题目详情
已知
cosα+cosβ=-
3
2
a
cosαcosβ=
a2-1
4
,求cosα,cosβ.
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:将第一个等式两边平方,利用完全平方公式化简,将第二个等式代入求出cos2α+cos2β的值,再利用完全平方公式求出cosα-cosβ的值,联立即可求出cosα与cosβ的值.
解答: 解:将cosα+cosβ=-
3
2
a两边平方得:(cosα+cosβ)2=cos2α+2cosαcosβ+cos2β=
3
4
a2
将cosαcosβ=
a2-1
4
代入得:cos2α+cos2β=
3
4
a2-
a2-1
2
=
a2+2
4

∴(cosα-cosβ)2=cos2α-2cosαcosβ+cos2β=
a2+2
4
-
a2-1
2
=
4-a2
4

∴cosα-cosβ=
4-a2
2
或cosα-cosβ=-
4-a2
2

当cosα-cosβ=
4-a2
2
时,解得:cosα=
4-a2
-
3
a
4
,cosβ=-
3
a+
4-a2
4

当cosα-cosβ=-
4-a2
2
时,解得:cosα=-
4-a2
+
3
a
4
,cosβ=
4-a2
-
3
a
4
点评:此题考查了同角三角函数间基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=x-ln|x|.
(1)判断函数f(x)的奇偶性,并说明理由;
(2)请用描点法画出函数f(x)的大致图象;
(2)设实常数a,b满足ab>0,试求f(x)在闭区间[a,b]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果椭圆
x2
16
+
y2
4
=1上任意两点连线的垂直平分线与x轴相交于点P(x0,0),求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:f(x)=ax2+(b-8)x-a-ab,当x∈(-3,2)时,f(x)>0,x∈(-∞,-3)∪(2,+∞)时,
f(x)<0.
(1)求y=f(x)的解析式
(2)解x的不等式ax2+bx+c≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

青年歌手电视大赛共有10名选手参加,并请了7名评委,如图所示的茎叶图(图1)是7名评委给参加最后决赛的两位选手甲、乙评定的成绩,流程图用来编写程序统计每位选手的成绩(各评委所给有效分数的平均值),试根据所给条件回答下列问题:

(1)根据茎叶图,选手乙的成绩中,众数是多少?选手甲的成绩中,中位数是多少?
(2)在流程图(如图2所示)中,用k表示评委人数,用a表示选手的成绩(各评委所给有效分数的平均值).横线①、②处应填什么?
(3)根据流程图,甲、乙的成绩分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

若各项为正数的数列{an)的前n项和为Sn,首项a1=1,a2=3,点P(
Sn+1
,Sn+2)(n∈N+)在函数y=(x+1)2的图象上
(1)求a3
(2)求数列{an)的通项公式;
(3)设数列{cn)的通项公式为cn=
an
an+t
,是否存在整数t,使得数列{cn)中存在项ck(k≥3,k∈N+),满足c1,c2,ck:构成等差数列,若存在,请求出所有符合条件的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
x
-
2
x
n展开式中第三项的系数比第二项的系数大162,求:
(1)n的值;
(2)展开式中含x3的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a,b,c,满足
(2a-b)cosC
c
=cosB,且sinA•sinB=
3
4
.求证:△ABC为正三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

sin675°=
 

查看答案和解析>>

同步练习册答案