精英家教网 > 高中数学 > 题目详情

【题目】选修4—4:坐标系与参数方程

已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为为参数, ),直线,若直线与曲线C相交于A,B两点,且

(Ⅰ)求

(Ⅱ)若M,N为曲线C上的两点,且,求的最小值.

【答案】(I).(Ⅱ) .

【解析】试题分析: (I)消去参数,即可得到的普通方程,利用代入,得直线的普通方程,在利用圆心到直线的距离,即可求解的值.

(Ⅱ)由(I)得,把代入圆的普通方程,得

,得到,即可求解最小值.

试题解析:(I)由,得

圆C的普通方程为.即圆心为,半径

代入,得直线的普通方程为

圆心到直线的距离 ,即

(Ⅱ)由(I)得,圆C的普通方程为

代入,得

化简,得圆C的极坐标方程为

依题意,设

的最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,如果输入的N是4,那么输出的p是(
A.6
B.10
C.24
D.120

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知直线的参数方程为为参数, 为倾斜角),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位,曲线的极坐标方程为

(Ⅰ)求曲线的普通方程和参数方程;

(Ⅱ)设与曲线交于 两点,求线段的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种商品原来每件售价为25元,年销售量8万件.
(Ⅰ)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收人不低于原收入,该商品每件定价最多为多少元?
(Ⅱ)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x元.公司拟投入 (x2﹣600)万元作为技改费用,投入50万元作为固定宣传费用,投入 x万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=log3(1+x)﹣log3(1﹣x).
(1)判断函数f(x)的奇偶性,并加以证明;
(2)已知函数g(x)=log ,当x∈[ ]时,不等式 f(x)≥g(x)有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}中,a2=2,a5=128.
(1)求通项an
(2)若bn=log2an , 数列{bn}的前n项和为Sn , 且Sn=360,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若方程有两根,求的取值范围;

(Ⅱ)在(Ⅰ)的前提下,设,求证: 随着的减小而增大;

(Ⅲ)若不等式恒成立,求证: ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数y=Asin(ωx+φ)在一个周期内的图象如图,此函数的解析式为(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】回答下列问题
(1)已知圆C的方程为x2+y2=4,直线l过点P(1,2),且与圆C交于A、B两点.若|AB|=2 ,求直线l的方程;
(2)设直线l的方程为(a+1)x+y﹣2﹣a=0(a∈R).若直线l在两坐标轴上的截距相等,求直线l的方程.

查看答案和解析>>

同步练习册答案