精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=xlnx+ax+b在(1,f(1))处的切线为2x-2y-1=0.
(1)求f(x)的单调区间与最小值;
(2)求证:${e^x}+lnx>cosx+\frac{sinx-1}{x}$.

分析 (1)求出函数的导数,计算f′(1),f(1)求出a,b的值,求出函数的解析式,求出函数的导数,解关于导函数的不等式,求出函数的单调区间和最值即可;
(2)令g(x)=x-sinx,x>0,得到当x>0时,x>sinx,令h(x)=ex-x-1,x>0,根据函数的单调性将问题转化为只需证$x+1+lnx>2-\frac{1}{x}$,根据函数的单调性证明即可.

解答 解:(1)f'(x)=1+lnx+a,
故f'(1)=1+a=1,得a=0,又2-2f(1)-1=0,
所以$f(1)=a+b=\frac{1}{2}$,得$b=\frac{1}{2}$.
则$f(x)=xlnx+\frac{1}{2}$,f'(x)=1+lnx,
当$x∈({0,\frac{1}{e}}]$时,f'(x)≤0,f(x)单调递减;
当$x∈({\frac{1}{e},+∞})$时,f'(x)>0,f(x)单调递增,
所以$f{({\frac{1}{e}})_{min}}=\frac{1}{2}-\frac{1}{e}$.
(2)证明:令g(x)=x-sinx,x>0,g'(x)=1-cosx≥0,g(x)递增,
所以g(x)>g(0)=0,所以当x>0时,x>sinx,
令h(x)=ex-x-1,x>0,h'(x)=ex-1≥0,h(x)递增,
h(x)>h(0)=0,所以当x>0时,ex>x+1,
要证${e^x}+lnx>cosx+\frac{sinx-1}{x}$,由-1≤cosx≤1,x>sinx,及ex>x+1,
得,${e^x}+lnx>x+1+lnx,cosx+\frac{sinx-1}{x}<1+1-\frac{1}{x}$,故原不等式成立,
只需证$x+1+lnx>2-\frac{1}{x}$,
即证x2-x+1+xlnx>0.由(1)可得$xlnx≥-\frac{1}{e}$,且${x^2}-x+1≥\frac{3}{4}$,
所以${x^2}-x+1+xlnx>\frac{3}{4}-\frac{1}{e}>0$,则原不等式成立.

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,考查不等式的证明,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.如图是一个算法的程序框图,如果输入i=0,S=0,那么输出的结果为(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某学校为了解本校学生的身体素质情况,决定在全校的1000名男生和800名女生中按分层抽样的方法抽取45名学生对他们课余参加体育锻炼时间进行问卷调查,将学生课余参加体育锻炼时间的情况分三类:A类(课余参加体育锻炼且平均每周参加体育锻炼的时间超过3小时),B类(课余参加体育锻炼但平均每周参加体育锻炼的时间不超过3小时),C类(课余不参加体育锻炼),调查结果如表:
  A类B类 C类 
 男生 18 x 3
 女生 10 8 y
(1)求出表中x、y的值;
(2)根据表格统计数据,完成下面的列联表,并判断是否有90%的把握认为课余参加体育锻炼且平均每周参加体育锻炼的时间超过3小时与性别有关;
  男生女生 总计 
 A类   
 B类和C类   
 总计   
(3)在抽取的样本中,从课余不参加体育锻炼学生中随机选取三人进一步了解情况,求选取三人中男女都有且男生比女生多的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k00.10 0.05 0.01 
 k0 2.706 3.841 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x|7<2x<33,x∈N},B={x|log3(x-1)<1},则A∩(∁RB)等于(  )
A.{4,5}B.{3,4,5}C.{x|3≤x<4}D.{x|3≤x≤5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在半径为1的圆O内任取一点M,过M且垂直OM与直线l与圆O交于圆A,B两点,则AB长度大于$\sqrt{3}$的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平面直角坐标系xOy中,双曲线C的一个焦点为F(2,0),一条渐近线的倾斜角为60°,则C的标准方程为(  )
A.$\frac{x^2}{3}-{y^2}=1$B.$\frac{y^2}{3}-{x^2}=1$C.${x^2}-\frac{y^2}{3}=1$D.${y^2}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图1,在边长为4的正三角形ABC中,D,F分别为AB,AC的中点,E为AD的中点.将△BCD与△AEF分别沿CD,EF同侧折起,使得二面角A-EF-D与二面角B-CD-E的大小都等于90°,得到如图2所示的多面体.

(1)在多面体中,求证:A,B,D,E四点共同面;
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点为A,右焦点为F,若以A为圆心,过点F的圆与直线3x-4y=0相切,则双曲线的离心率为(  )
A.$\frac{7}{4}$B.$\frac{7}{5}$C.$\frac{8}{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.体积为$18\sqrt{3}$的正三棱锥A-BCD的每个顶点都在半径为R的球O的球面上,球心O在此三棱锥内部,且R:BC=2:3,点E为线段BD上一点,且DE=2EB,过点E作球O的截面,则所得截面圆面积的取值范围是(  )
A.[4π,12π]B.[8π,16π]C.[8π,12π]D.[12π,16π]

查看答案和解析>>

同步练习册答案