精英家教网 > 高中数学 > 题目详情
当0<x<
π
2
时,函数f(x)=
cos2x+cos2x+9sin2x
sin2x
的最小值为(  )
A、2
B、2
3
C、4
D、4
3
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:由x的范围确定出tanx大于0,f(x)解析式利用同角三角函数间基本关系整理后,利用基本不等式求出最小值即可.
解答: 解:∵0<x<
π
2
,∴tanx>0,
∴f(x)=
2cos2x+8sin2x
2sinxcosx
=
1
tanx
+4tanx≥4,当且仅当4tanx=
1
tanx
,即tanx=
1
2
时取等号,
则f(x)的最小值为4.
故选:C.
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.
(Ⅰ)求角A的大小;
(Ⅱ)若a=5,b+c=7,求△ABC的面积.(改编题)

查看答案和解析>>

科目:高中数学 来源: 题型:

关于x的不等式(1+x)(2+x)>0的解集是(  )
A、{x|x<-1}
B、{x|x>-1或x<-2}
C、{x|x<1或x>2}
D、{x|-2<x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:

角α、β(0<α<β<π)的终边与单位圆分别交于A、B两点,已知A、B的横坐标分别为
2
10
、-
2
5
5
.试求:
(Ⅰ)tan(α-β);
(Ⅱ)α-2β.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=log0.34,b=log43,c=0.3-2,则a,b,c的大小关系是(  )
A、c<a<b
B、b<a<c
C、a<c<b
D、a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:

若点(4,a)在y=x
1
2
的图象上,则tan
a
6
π的值为(  )
A、0
B、
3
3
C、1
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,α∈[π,
2
],求
-sinα-2cosα
-cosα+1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=1,an-an-1=3(n>1),则a10=(  )
A、27B、28C、29D、30

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=-λx2+2(2-λ)x在区间[-2,1]上是增函数,则实数λ的取值范围是(  )
A、(-∞,-2]
B、[-2,1]
C、[1,+∞)
D、(-2,1)

查看答案和解析>>

同步练习册答案