精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\frac{(x-1)|x|}{|{x}^{2}-1|}$.
(1)写出函数定义域;
(2)在直角坐标系中画出函数f(x)的图象的大致形状;
(3)根据图形,指出函数的奇偶性,函数单调区间.

分析 (1)根据分母不能为零,即可求出函数的定义域,
(2)去绝对值,化为分段函数,再作图,
(3)由图象可知答案.

解答 解:(1)函数的定义域为(-∞,-1)∪(-1,1)∪(1,+∞);
(2)f(x)=$\frac{(x-1)|x|}{|{x}^{2}-1|}$=$\left\{\begin{array}{l}{\frac{x}{x+1},x>1,或-1<x<0}\\{-\frac{x}{x+1},0≤x<1,或x<-1}\end{array}\right.$,图象如图所示,
(3)由图象可知,函数为非奇非偶函数,
f(x)在(-1,0)和(1,+∞)为增函数,在(0,1)和(-∞,-1)为减函数.

点评 本题考查了函数图象的作法和识别以及函数的定义域,关键是去绝对值,化为分段函数,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.f(x)的定义域为[-1,2],则f(2x+1)的定义域是[-1,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在区间(-∞,0)上为增函数的是(  )
A.y=-xB.y=$\frac{x}{1-x}$+2C.y=-x2-2x-1D.y=x2+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为B(0,-2),斜率为1的直线l过它的右焦点F,且与椭圆相交于B、P两点.求:
(1)椭圆C的方程;
(2)以原点为顶点,坐标轴为对称轴,且过点P的抛物线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在△ABC中,∠C=90°,P为三角形内一点,且S△PAB=S△PBC=S△PCA,求证:|PA|2+|PB|2=5|PC|2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对函数f(x),若对于定义域中的任意三个数x1,x2,x3,都有f(x1),f(x2),f(x3)都能作为一个三角形三边的长,则称f(x)为“三角型函数”.已知函数f(x)=$\frac{{9}^{x}+m•{3}^{x}+1}{{9}^{x}+{3}^{x}+1}$为“三角型函数”.则实数m的取值范围是(  )
A.[1,4]B.(-$\frac{1}{2}$,1)C.[-$\frac{1}{2}$,4]D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.判断下列函数是否具有奇偶性:
(1)f(x)=x+1;
(2)f(x)=x3+3x,x∈[-4,4);
(3)f(x)=x2+1,x∈[-6,-2]∪[2,6].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.用“充分”或“必要”填空:
(1)“x∈A∩B”是“x∈A”的充分不必要条件.
(2)“x∈A∪B”是“x∈B”的必要不充分条件.
(3)“x∈(∁UA)”是“x∈U”的充分不必要条件.
(4)“x∈(∁UA)∪A”是“x∈A”的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.偶函数f(x)在区间[1,4]上为减函数,则它在区间[-4,-1]上(  )
A.是增函数B.是减函数C.无法确定D.不具备单调性

查看答案和解析>>

同步练习册答案