精英家教网 > 高中数学 > 题目详情
5.已知sin(x+π)+cos(x-π)=$\frac{1}{2}$,x∈(0,π).
(1)求sinxcosx的值;
(2)求sinx-cosx的值.

分析 根据同角三角函数关系式求值即可.

解答 解:(1)由sin(x+π)+cos(x-π)=$\frac{1}{2}$,
可得:-sinx-cosx=$\frac{1}{2}$,即sinx+cosx=$-\frac{1}{2}$,
那么:(sinx+cosx)2=$\frac{1}{4}$,
得:2sinxcosx=-$\frac{3}{4}$
∴sinxcosx=$-\frac{3}{8}$;
(2)∵x∈(0,π).
sinx+cosx=$-\frac{1}{2}$
∴cosx<0,sinx>0
∴sinx-cosx>0
则(sinx-cosx)2=(sinx+cosx)2-4sinxcosx=$\frac{1}{4}$-4×($-\frac{3}{8}$)=$\frac{7}{4}$
∴sinx-cosx=$\frac{{\sqrt{7}}}{2}$.

点评 本题主要考察了同角三角函数关系式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知抛物线x2=2y的焦点与椭圆$\frac{{y}^{2}}{m}$+$\frac{{x}^{2}}{2}$=1的一个焦点重合,则m=(  )
A.$\frac{9}{4}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.根据所给条件求直线的方程:
(1)直线过点(-4,0),倾斜角的正弦值为$\frac{\sqrt{10}}{10}$;
(2)直线过点(-2,1),且到原点的距离为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设AP=1,AD=$\sqrt{3}$,三棱锥P-ABD的体积V=$\frac{{\sqrt{3}}}{4}$,求二面角D-AE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点.求证:
(Ⅰ)PA∥平面BDE;
(Ⅱ)平面PAC⊥平面BDE;
(III)若PB与底面所成的角为60°,AB=2a,求三棱锥E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.通过随机询问2016名性别不同的大学生是否爱好某项运动,得到K2=6.023,则根据这一数据查阅表,则有把握认为“爱好该项运动与性别有关”的可信程度是(  )
P(K2≥k)0.250.150.100.0250.0100.005
k1.3232.0722.7065.0246.6357.879
A.90%B.95%C.97.5%D.99.5%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如果随机变量ξ~B(n,p),且E(ξ)=10,D(ξ)=8,则p等于(  )
A.$\frac{1}{7}$B.$\frac{1}{6}$C.$\frac{1}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.定义在(-1,1)上的函数f(x)满足:$f(x)-f(y)=f({\frac{x-y}{1-xy}})$,当x∈(-1,0)时,有f(x)>0,且$f({-\frac{1}{2}})=1$.设$m=f({\frac{1}{5}})+f({\frac{1}{11}})+…+f({\frac{1}{{{n^2}+n-1}}}),\;\;n≥2,n∈{N^*}$,则实数m与-1的大小关系为(  )
A.m<-1B.m=-1C.m>-1D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某几何体的三视图(单位:cm)如图所示,则此几何体的所有棱长之和为27+$\sqrt{34}$+$\sqrt{41}$cm,体积为20cm3

查看答案和解析>>

同步练习册答案