精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,圆C的方程为x2+y2-4x=0.若直线y=k(x+1)上存在一点P,使过P所作的圆的两条切线相互垂直,则实数k的取值范围是(  )
A、(-∞,-2
2
B、[-2
2
,2
2
]
C、[-
2
5
5
2
5
5
]
D、(-∞,-2
2
]∪[2
2
,+∞)
考点:直线和圆的方程的应用
专题:综合题,直线与圆
分析:由题意可得圆心为C(2,0),半径R=2;设两个切点分别为A、B,则由题意可得四边形PACB为正方形,圆心到直线y=k(x+1)的距离小于或等于PC=2
2
,即
|2k-0+k|
k2+1
≤2
2
,由此求得k的范围.
解答: 解:∵C的方程为x2+y2-4x=0,故圆心为C(2,0),半径R=2.
设两个切点分别为A、B,则由题意可得四边形PACB为正方形,故有PC=
2
R=2
2

∴圆心到直线y=k(x+1)的距离小于或等于PC=2
2

|2k-0+k|
k2+1
≤2
2
,解得k2≤8,可得-2
2
≤k≤2
2

故选:B.
点评:本题主要考查直线和圆相交的性质,点到直线的距离公式的应用,体现了转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}对任意的m、n∈N*,满足am+n=am+an,且a2=1,那么a10等于(  )
A、3B、5C、7D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则它的体积是(  )
A、5
B、6
C、
14
3
D、
19
3

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,M={x|x2+3x<0},N={x|y=
-x-1
},则图中阴影部分表示的集合为(  )
A、{x|x>-1}
B、{x|-3<x<0}
C、{x|x≤-3}
D、{x|-1<x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,a3+a4=a12,a1+a2=10,则a2+a4+…a100的值等于(  )
A、1300
B、1350
C、2650
D、
28000
13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+mx+n(m,n∈R)的值域为[0,+∞),若关于x的不等式f(x)<a-1的解集为(m-3,m+2),则实数a的值是(  )
A、
21
4
B、
25
4
C、6
D、
29
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z满足
1+z
1-z
=i(i为虚数单位),则z的虚部为(  )
A、1B、-iC、iD、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为A,在x轴负半轴上有一点B,满足
BF1
=
F1F2
,且
AB
AF2
=0.
(1)若过A、B、F2三点的圆恰好与直线l1:x-
3
y-3=0相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,在x轴上是否存在点P(m,0)使得以PM、PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(cosφ,sinφ),b=(cosx,sinx),其中0<φ<π,且函数f(x)=(
a
b
)cosx+sin(φ-x)sinx的图象过点(
π
6
,1).
(Ⅰ)求φ的值;
(Ⅱ)将函数y=f(x)图象向右平移
π
6
,得到函数y=g(x)的图象,求函数y=g(x)递减区间.

查看答案和解析>>

同步练习册答案