精英家教网 > 高中数学 > 题目详情
16.已知数列{an}的前n的项和为Sn,an≠0,且2Sn是a1与anan+1的等差中项.
(1)若a1=1,求数列{an}的通项公式;
(2)在(1)的条件下,求数列{$\frac{(-1)^{n}•n}{{{a}_{n}a}_{n+1}}$}的前n项和Tn

分析 由2Sn是a1与anan+1的等差中项,化简得an+1-an-1=4,数列{an}是等差数列即可写出通项公式an,进而可得{$\frac{(-1)^{n}•n}{{{a}_{n}a}_{n+1}}$},分n为偶数和奇数分别求和可得.

解答 解:(1)2Sn是a1与anan+1的等差中项,a1=1,
4Sn=a1+anan+1=1+anan+1
4Sn-1=1+an-1an
两式相减得:4an=anan+1-an-1an,an≠0,
an+1-an-1=4
∴数列{an}是以2为公差,以1为首项的等差数列,
an=2n-1.
(2)$\frac{n}{{a}_{n}•{a}_{n+1}}$=$\frac{n}{(2n-1)(2n+1)}$=$\frac{1}{4}$($\frac{1}{2n-1}+\frac{1}{2n+1}$),
设bn=$\frac{(-1)^{n}•n}{{{a}_{n}a}_{n+1}}$=$\frac{1}{4}$[(-1)n$\frac{1}{2n-1}+\frac{1}{2n+1}$],
当n为偶数时,
${T}_{n}=\frac{1}{4}[(1+\frac{1}{3})-(\frac{1}{3}-\frac{1}{5})+…+$$(\frac{1}{2n-3}-\frac{1}{2n-1})-(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{4}(1-\frac{1}{2n+1})=\frac{n}{2(2n+1)}$,
当n为奇数时,
${T}_{n}=\frac{1}{4}[(1+\frac{1}{3})-(\frac{1}{3}+\frac{1}{5})+…-$$(\frac{1}{2n-3}+\frac{1}{2n-1})+(\frac{1}{2n-1}+\frac{1}{2n+1})]$,
=$\frac{1}{4}$(1+$\frac{1}{2n+1}$)
=$\frac{n+1}{2(2n+1)}$.
∴${T}_{n}=\left\{\begin{array}{l}{\frac{n+1}{2(2n+1)}}&{n为奇数}\\{\frac{n}{2(2n+1)}}&{n为偶数}\end{array}\right.$.

点评 题考查等差数列的和求和公式,涉及分类讨论的思想,在分类讨论求和时,易对项数即项的确定不准确,产生错位,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知数列{an}的前n项和为Sn,S1=6,S2=4,Sn>0,且S2n,S 2n-1.S 2n+2成等比数列,S2n-1.S2n+2,S2n+1成等差数列,则a2016等于-1009.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且满足:2asin A=(2b-c)sin B+(2c-b)sinC.
(I) 求角A的大小:
(2)若a=2,求△ABC的周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f($\frac{5π}{6}$)的值为(  )
A.$-\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二个电流瞬时值函数式分别是I1=12sin(ωt-30°),I2=10sin(ωt+30°),求合成后的电流I=I1+I2的三角函数式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知tanα=3,则$\frac{2sinα-cosα}{2sinα+cosα}$的值是$\frac{5}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在△ABC中,|$\overrightarrow{CA}$|=$\sqrt{6}$,|$\overrightarrow{CB}$|=2,∠ACB=75°.
(1)求|$\overrightarrow{AB}$|的值;
(2)若$\overrightarrow{AD}$=$\sqrt{3}$$\overrightarrow{DB}$,求证:$\overrightarrow{CD}$⊥$\overrightarrow{AB}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,高AD把BC分为长2cm和3cm的两段,∠A=45°,则S△ABC=15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一组数据分别为12,16,20,23,20,15,28,23,则这组数据的中位数是(  )
A.19B.20C.21.5D.23

查看答案和解析>>

同步练习册答案